An Accurate Second-Order Approximation Factorization Method for Time-Dependent Incompressible Navier-Stokes Equations in Spherical Polar Coordinates

Weiming Sha, Koichi Nakabayashi, Hiromasa Ueda

研究成果: Article査読

7 被引用数 (Scopus)

抄録

A finite-difference method for solving three-dimensional, time-dependent incompressible Navier-Stokes equations in spherical polar coordinates is presented in detail. A new algorithm, which is second-order accurate in time and space, is considered, and decoupling between the velocity and the pressure is achieved by this algorithm. Further, the numerical method is tested by computing the spherical Couette flow between two concentric spheres with the inner one rotating. A comparison of the numerical solutions with available numerical results and experimental measurements is made. It is demonstrated that the numerical code is valid for solving three-dimensional, unsteady incompressible Navier-Stokes equations in spherical polar coordinates.

本文言語English
ページ(範囲)47-66
ページ数20
ジャーナルJournal of Computational Physics
142
1
DOI
出版ステータスPublished - 1998 5 1
外部発表はい

ASJC Scopus subject areas

  • 数値解析
  • モデリングとシミュレーション
  • 物理学および天文学(その他)
  • 物理学および天文学(全般)
  • コンピュータ サイエンスの応用
  • 計算数学
  • 応用数学

フィンガープリント

「An Accurate Second-Order Approximation Factorization Method for Time-Dependent Incompressible Navier-Stokes Equations in Spherical Polar Coordinates」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル