ALIX and ceramide differentially control polarized small extracellular vesicle release from epithelial cells

Takahide Matsui, Futaba Osaki, Shu Hiragi, Yuriko Sakamaki, Mitsunori Fukuda

研究成果: Article査読

1 被引用数 (Scopus)

抄録

Exosomes, important players in cell–cell communication, are small extracellular vesicles of endocytic origin. Although single cells are known to release various kinds of exosomes (referred to as exosomal heterogeneity), very little is known about the mechanisms by which they are produced and released. Here, we established methods of studying exosomal heterogeneity by using polarized epithelial cells and showed that distinct types of small extracellular vesicles (more specifically CD9- and CD63-positive, Annexin I-negative small extracellular vesicles, which we refer to as exosomes herein) are differentially secreted from the apical and basolateral sides of polarized epithelial cells. We also identify GPRC5C (G protein-coupled receptor class C group 5 member C) as an apical exosome-specific protein. We further demonstrate that basolateral exosome release depends on ceramide, whereas ALIX, an ESCRT (endosomal sorting complexes required for transport)-related protein, not the ESCRT machinery itself, is required for apical exosome release. Thus, two independent machineries, the ALIX–Syntenin1–Syndecan1 machinery (apical side) and the sphingomyelinase-dependent ceramide production machinery (basolateral side), are likely to be responsible for the polarized exosome release from epithelial cells.

本文言語English
論文番号e51475
ジャーナルEMBO Reports
22
5
DOI
出版ステータスPublished - 2021 5 5

ASJC Scopus subject areas

  • 生化学
  • 分子生物学
  • 遺伝学

フィンガープリント

「ALIX and ceramide differentially control polarized small extracellular vesicle release from epithelial cells」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル