Algorithms for finding noncrossing paths with minimum total length in plane graphs

Jun‐Ya ‐Y Takahashi, Hitoshi Suzuki, Takao Nishizeki

研究成果: Article査読

抄録

Assume that G is an undirected planar graph and the edge length of G is a nonnegative real number. When k terminal pairs are specified on two specified face boundaries, this paper gives an algorithm that derives the “noncrossing paths” with the minimum sum of lengths that connects the respective terminal pairs. By the noncrossing paths is meant the paths which do not cross on the plane, although the point or the edge may be shared. the computation time of the proposed algorithm is O(n log n), where n is the number of points on the planar graph G; k need not be a constant.

本文言語English
ページ(範囲)1-15
ページ数15
ジャーナルElectronics and Communications in Japan (Part III: Fundamental Electronic Science)
78
4
DOI
出版ステータスPublished - 1995 4

ASJC Scopus subject areas

  • Electrical and Electronic Engineering

引用スタイル