Algorithms for finding distance-edge-colorings of graphs

Takehiro Ito, Akira Kato, Xiao Zhou, Takao Nishizeki

研究成果: Article査読

9 被引用数 (Scopus)

抄録

For a bounded integer ℓ, we wish to color all edges of a graph G so that any two edges within distance ℓ have different colors. Such a coloring is called a distance-edge-coloring or an ℓ-edge-coloring of G. The distance-edge-coloring problem is to compute the minimum number of colors required for a distance-edge-coloring of a given graph G. A partial k-tree is a graph with tree-width bounded by a fixed constant k. We first present a polynomial-time exact algorithm to solve the problem for partial k-trees, and then give a polynomial-time 2-approximation algorithm for planar graphs.

本文言語English
ページ(範囲)304-322
ページ数19
ジャーナルJournal of Discrete Algorithms
5
2 SPEC. ISS.
DOI
出版ステータスPublished - 2007 6

ASJC Scopus subject areas

  • 理論的コンピュータサイエンス
  • 離散数学と組合せ数学
  • 計算理論と計算数学

フィンガープリント

「Algorithms for finding distance-edge-colorings of graphs」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル