Algebraic theta functions and the p-adic interpolation of eisenstein-kronecker numbers

Kenichi Bannai, Shinichi Kobayashi

研究成果: Article査読

12 被引用数 (Scopus)

抄録

We study the properties of Eisenstein-Kronecker numbers, which are related to special values of Hecke L-functions of imaginary quadratic fields. We prove that the generating function of these numbers is a reduced ("normalized" or "canonical" in some literature) theta function associated to the Poincaré bundle of an elliptic curve. We introduce general methods to study the algebraic and p-adic properties of reduced theta functions for abelian varieties with complex multiplication (CM). As a corollary, when the prime p is ordinary, we give a new construction of the two-variable p-adic measure interpolating special values of Hecke L-functions of imaginary quadratic fields, originally constructed by Višik-Manin and Katz. Our method via theta functions also gives insight for the case when p is supersingular. The method of this article will be used in subsequent articles to study in two variables the p-divisibility of critical values of Hecke L-functions associated to imaginary quadratic fields for inert p, as well as explicit calculation in two variables of the p-adic elliptic polylogarithms for CM elliptic curves.

本文言語English
ページ(範囲)229-295
ページ数67
ジャーナルDuke Mathematical Journal
153
2
DOI
出版ステータスPublished - 2010 6

ASJC Scopus subject areas

  • 数学 (全般)

フィンガープリント

「Algebraic theta functions and the p-adic interpolation of eisenstein-kronecker numbers」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル