Age estimation from brain MRI images using deep learning

Tzu Wei Huang, Hwann Tzong Chen, Ryuichi Fujimoto, Koichi Ito, Kai Wu, Kazunori Sato, Yasuyuki Taki, Hiroshi Fukuda, Takafumi Aoki

研究成果: Conference contribution

26 被引用数 (Scopus)

抄録

Estimating human age from brain MR images is useful for early detection of Alzheimer's disease. In this paper we propose a fast and accurate method based on deep learning to predict subject's age. Compared with previous methods, our algorithm achieves comparable accuracy using fewer input images. With our GPU version program, the time needed to make a prediction is 20 ms. We evaluate our methods using mean absolute error (MAE) and our method is able to predict subject's age with MAE of 4.0 years.

本文言語English
ホスト出版物のタイトル2017 IEEE 14th International Symposium on Biomedical Imaging, ISBI 2017
出版社IEEE Computer Society
ページ849-852
ページ数4
ISBN(電子版)9781509011711
DOI
出版ステータスPublished - 2017 6 15
イベント14th IEEE International Symposium on Biomedical Imaging, ISBI 2017 - Melbourne, Australia
継続期間: 2017 4 182017 4 21

出版物シリーズ

名前Proceedings - International Symposium on Biomedical Imaging
ISSN(印刷版)1945-7928
ISSN(電子版)1945-8452

Other

Other14th IEEE International Symposium on Biomedical Imaging, ISBI 2017
国/地域Australia
CityMelbourne
Period17/4/1817/4/21

ASJC Scopus subject areas

  • 生体医工学
  • 放射線学、核医学およびイメージング

フィンガープリント

「Age estimation from brain MRI images using deep learning」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル