Active damper using electrorheological suspension and its application to vibration isolation control

Masami Nakano, Takuya Yonekawa

研究成果: Article査読

8 被引用数 (Scopus)

抄録

The concept and the damping characteristics of an active damper using electrorheological (ER) fluids containing numerous dielectric particles are put forward, and applications to vibration isolation control are investigated numerically, based on the analytical model of the ER damper involving the approximate function of pressure drops across an ER valve obtained experimentally. The ER damper was found to be analogous to the hybrid damper having a viscous damper with constant damping and an electrically variable friction damper. Thus, the ER damper under constant input voltage behaves like a coulomb friction damper, and the active damper can be constructed, by electrically varying the friction-like forces proportional, to the piston speed, to be a linear viscous damper with electrically variable damping coefficient. Three methodologies of vibration isolation control using the ER active damper were applied to a single-degree-of-freedom excited vibration system consisting of a mass, a spring, and the ER damper. Among these control methodologies, the nonlinear feedback control of the square root of the absolute velocity of the mass was found to be most effective to reduce the vibration transmissibility of the system, and to enable control of transmissibility approaching that which can be achieved with a full active vibration isolation system using an actuator.

本文言語English
ページ数1
ジャーナルNoise and Vibration Worldwide
28
8
出版ステータスPublished - 1997 9月 1
外部発表はい

ASJC Scopus subject areas

  • 金属および合金
  • 音響学および超音波学

フィンガープリント

「Active damper using electrorheological suspension and its application to vibration isolation control」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル