TY - JOUR
T1 - Acidity and basicity of metal oxide catalysts for formaldehyde reaction in supercritical water at 673 K
AU - Watanabe, Masaru
AU - Osada, Mitsumasa
AU - Inomata, Hiroshi
AU - Arai, Kunio
AU - Kruse, Andrea
PY - 2003/6/10
Y1 - 2003/6/10
N2 - Formaldehyde (HCHO) reactions in supercritical water (673K and 25-40MPa) with and without acid and base catalysts (homogeneous: H2SO4 and NaOH, and heterogeneous: CeO2, MoO3, TiO2, and ZrO2) were conducted by use of batch reactors. Cannizzaro reaction (2HCHO+H2O → CH3OH+HCOOH) and self-decomposition of HCHO (HCHO → CO+H2) were found to be primary reactions for all the cases and the contribution of each reaction depended on the condition. In the case of the homogeneous systems, Cannizzaro reaction became dominant with increasing bulk hydroxyl ion (OH-). The simple network model can well express the experimental results in the homogeneous conditions. We correlated the ratio of the yield of CH3OH to that of CO (at 15min) against bulk OH- in the homogeneous system. For elucidating acidity and basicity of metal oxide catalysts on HCHO reaction in supercritical water, OH- concentration on the metal oxide surface was calculated by use of the above correlation and the following order was found: CeO2 > ZrO2 > MoO3 > TiO2 (rutile) > TiO2 (anatase). At the reaction condition, CeO2 and ZrO2 were base catalysts, and MoO3 and TiO2 were acid catalysts. The experimental results with the metal oxides can be expressed by the model that was developed under homogeneous systems, with the values of the OH- concentrations that were calculated from the correlation about the CH3OH/CO ratio at 15min of reaction time.
AB - Formaldehyde (HCHO) reactions in supercritical water (673K and 25-40MPa) with and without acid and base catalysts (homogeneous: H2SO4 and NaOH, and heterogeneous: CeO2, MoO3, TiO2, and ZrO2) were conducted by use of batch reactors. Cannizzaro reaction (2HCHO+H2O → CH3OH+HCOOH) and self-decomposition of HCHO (HCHO → CO+H2) were found to be primary reactions for all the cases and the contribution of each reaction depended on the condition. In the case of the homogeneous systems, Cannizzaro reaction became dominant with increasing bulk hydroxyl ion (OH-). The simple network model can well express the experimental results in the homogeneous conditions. We correlated the ratio of the yield of CH3OH to that of CO (at 15min) against bulk OH- in the homogeneous system. For elucidating acidity and basicity of metal oxide catalysts on HCHO reaction in supercritical water, OH- concentration on the metal oxide surface was calculated by use of the above correlation and the following order was found: CeO2 > ZrO2 > MoO3 > TiO2 (rutile) > TiO2 (anatase). At the reaction condition, CeO2 and ZrO2 were base catalysts, and MoO3 and TiO2 were acid catalysts. The experimental results with the metal oxides can be expressed by the model that was developed under homogeneous systems, with the values of the OH- concentrations that were calculated from the correlation about the CH3OH/CO ratio at 15min of reaction time.
KW - CeO
KW - Formaldehyde
KW - Hydroxyl ion
KW - Metal oxide catalyst
KW - MoO
KW - Solid acid and base
KW - Supercritical water
KW - TiO
KW - ZrO
UR - http://www.scopus.com/inward/record.url?scp=0038147359&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0038147359&partnerID=8YFLogxK
U2 - 10.1016/S0926-860X(02)00656-7
DO - 10.1016/S0926-860X(02)00656-7
M3 - Article
AN - SCOPUS:0038147359
SN - 0926-860X
VL - 245
SP - 333
EP - 341
JO - Applied Catalysis A: General
JF - Applied Catalysis A: General
IS - 2
ER -