A way of making trapdoor one-way functions trapdoor no-way

Eikoh Chida, Motoji Ohmori, Hiroki Shizuya

    研究成果: Article査読

    抄録

    SUMMARY A trapdoor one-way function is an extended version of a zero-way permutation. A zero-way permutation was first introduced by Niemi-Renvall in Asiacrypt'94 [7]. In this paper we define the class of functions called no-way functions. This is an extended version of a zero-way permutation. Intuitively, a function f is no-way if, without trapdoor, both computing / and computing f-1 are hard. Li-Chida-Shizuya [6] defined the notion of a no-way function, which is a provable-security version of a zero-way permutation. They also gave an example of a no-way function such that computing f and f-1 is proven to be as hard as breaking the Diffie-Hellman key exchange scheme. We redefine the notion of a trapdoor no-way function more preciously, classify no-way functions by the property of the trapdoor: common, separated and semi-separated trapdoor no-way, give a method for constructing trapdoor no-way functions from trapdoor one-way functions, and also give an example of trapdoor no-way functions.

    本文言語English
    ページ(範囲)151-156
    ページ数6
    ジャーナルIEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences
    E84-A
    1
    出版ステータスPublished - 2001 1月

    ASJC Scopus subject areas

    • 信号処理
    • コンピュータ グラフィックスおよびコンピュータ支援設計
    • 電子工学および電気工学
    • 応用数学

    フィンガープリント

    「A way of making trapdoor one-way functions trapdoor no-way」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

    引用スタイル