### 抜粋

We present a unified scheme for detecting digital components of various planar curves in a binary edge image. A digital component of a curve is the set of input edge points from each of which the horizontal or vertical distance to the curve is at most 0.5. Our algorithm outputs all curve components containing at least k points (k is a given threshold) in O(n^{d}) time (if d≥2) and linear space, where n is the number of points, and d is a measure that reflects the complexity of a family of curves; for example, d=2,3 and 5 for lines, circles and ellipses, respectively. For most of the popular families of curves, our only primitive operations are algebraic operations of bounded degree and comparisons. We also propose an approximate algorithm for computing an approximation solution with error ratio ε=1-α (called an α-sensitive solution), whose time complexity is O((t/ε)^{d-1}n), which is very efficient if the threshold-ratio t=n/k is small.

元の言語 | English |
---|---|

ページ（範囲） | 73-93 |

ページ数 | 21 |

ジャーナル | Computational Geometry: Theory and Applications |

巻 | 18 |

発行部数 | 2 |

DOI | |

出版物ステータス | Published - 2001 3 1 |

### ASJC Scopus subject areas

- Computer Science Applications
- Geometry and Topology
- Control and Optimization
- Computational Theory and Mathematics
- Computational Mathematics

## フィンガープリント A unified scheme for detecting fundamental curves in binary edge images' の研究トピックを掘り下げます。これらはともに一意のフィンガープリントを構成します。

## これを引用

*Computational Geometry: Theory and Applications*,

*18*(2), 73-93. https://doi.org/10.1016/S0925-7721(01)00002-5