A Synergetic Brain-Machine Interfacing Paradigm for Multi-DOF Robot Control

Saugat Bhattacharyya, Shingo Shimoda, Mitsuhiro Hayashibe

研究成果: Article査読

25 被引用数 (Scopus)

抄録

This paper proposes a novel brain-machine interfacing (BMI) paradigm for control of a multijoint redundant robot system. Here, the user would determine the direction of end-point movement of a 3-degrees of freedom (DOF) robot arm using motor imagery electroencephalography signal with co-Adaptive decoder (adaptivity between the user and the decoder) while a synergetic motor learning algorithm manages a peripheral redundancy in multi-DOF joints toward energy optimality through tacit learning. As in human motor control, torque control paradigm is employed for a robot to be adaptive to the given physical environment. The dynamic condition of the robot arm is taken into consideration by the learning algorithm. Thus, the user needs to only think about the end-point movement of the robot arm, which allows simultaneous multijoints control by BMI. The support vector machine-based decoder designed in this paper is adaptive to the changing mental state of the user. Online experiments reveals that the users successfully reach their targets with an average decoder accuracy of over 75% in different end-point load conditions.

本文言語English
論文番号7479553
ページ(範囲)957-968
ページ数12
ジャーナルIEEE Transactions on Systems, Man, and Cybernetics: Systems
46
7
DOI
出版ステータスPublished - 2016 7
外部発表はい

ASJC Scopus subject areas

  • ソフトウェア
  • 制御およびシステム工学
  • 人間とコンピュータの相互作用
  • コンピュータ サイエンスの応用
  • 電子工学および電気工学

フィンガープリント

「A Synergetic Brain-Machine Interfacing Paradigm for Multi-DOF Robot Control」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル