A structural comparison of the computational difficulty of breaking discrete log cryptosystems

Kouichi Sakurai, Hiroki Shizuya

    研究成果: Article査読

    22 被引用数 (Scopus)

    抄録

    The complexity of breaking cryptosystems of which security is based on the discrete logarithm problem is explored. The cryptosystems mainly discussed are the Diffie-Hellman key exchange scheme (DH), the Bellare-Micali noninteractive oblivious transfer scheme (EM), the ElGamal public-key cryptosystem (EG), the Okamoto conference-key sharing scheme (CONF), and the Shamir 3-pass key-transmission scheme (3PASS). The obtained relation among these cryptosystems is that 3 PASS < CONF < EG =£" BM s DH, where <JJdenotes the polynomial-time functionally many-to-one reducibility, i.e., a function version of the <£ -reducibility. We further give some condition in which these algorithms have equivalent difficulty. One of such conditions suggest another advantage of the discrete logarithm associated with ordinary elliptic curves.

    本文言語English
    ページ(範囲)29-43
    ページ数15
    ジャーナルJournal of Cryptology
    11
    1
    DOI
    出版ステータスPublished - 1998

    ASJC Scopus subject areas

    • ソフトウェア
    • コンピュータ サイエンスの応用
    • 応用数学

    フィンガープリント

    「A structural comparison of the computational difficulty of breaking discrete log cryptosystems」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

    引用スタイル