A spectrum-driven damage identification by minimum constitutive relation error and sparse regularization

Jia Guo, Jian Jiao, Kohei Fujita, Izuru Takewaki

研究成果: Article査読

1 被引用数 (Scopus)

抄録

This paper proposes a novel model-based damage identification strategy based on minimum constitutive relation error and sparse regularization using the power spectrum density data. Firstly, the stationary random vibration problem is transformed into a series of harmonic vibrations by the pseudo excitation method and the error in constitutive relation is established by the admissible stress field and admissible displacement field. A much more general and simpler strategy so as to build the admissible stress field is addressed by requiring only an extra decomposition of the stiffness matrix. Then, the sparse regularization is added to the original constitutive relation error objective function to circumvent the ill-posedness of the inverse problem. Finally, the solution of this nonlinear optimization problem is solved by the alternating minimization method. The proposed method has the advantage that only measurement power spectrum density data from few limited sensors are needed in the inverse analysis. Numerical and experimental results show the effectiveness and robustness of this approach.

本文言語English
論文番号106496
ジャーナルMechanical Systems and Signal Processing
136
DOI
出版ステータスPublished - 2020 2月
外部発表はい

ASJC Scopus subject areas

  • 制御およびシステム工学
  • 信号処理
  • 土木構造工学
  • 航空宇宙工学
  • 機械工学
  • コンピュータ サイエンスの応用

フィンガープリント

「A spectrum-driven damage identification by minimum constitutive relation error and sparse regularization」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル