TY - GEN
T1 - A soft-bodied fluid-driven amoeboid robot inspired by plasmodium of true slime mold
AU - Umedachi, Takuya
AU - Takeda, Koichi
AU - Nakagaki, Toshiyuki
AU - Kobayashi, Ryo
AU - Ishiguro, Akio
PY - 2010/12/1
Y1 - 2010/12/1
N2 - Animals exhibit astoundingly adaptive and supple locomotion under real world constraints. In order to endow robots with similar capabilities, we must implement many degrees of freedom, equivalent to animals, into the robots' bodies. For taming many degrees of freedom, the concept of autonomous decentralized control plays a pivotal role. However, a systematic way of designing such autonomous decentralized control system is still missing. Aiming at understanding the principles that underlie animals' locomotion, in our early studies, we focused on plasmodium of true slime mold, a primitive living organism, and extracted a design scheme for autonomous decentralized control system. In order to demonstrate the relevance of this design scheme, this paper presents a soft-bodied fluid-driven amoeboid robot inspired by plasmodium of true slime mold. The significant features of this robot are twofold: (1) the robot has fluidic circuit (i.e., cylinders and nylon tubes filled with fluid) and truly soft and deformable body stemming from real-time tunable springs, the former serves as protoplasm and the latter is used for elastic actuators; and (2) a fully decentralized control using coupled oscillators with completely local sensory feedback mechanism is realized by exploiting the long-distance physical interaction between the body parts stemming from the law of conservation of protoplasmic mass. The experimental results show that this robot exhibits truly supple locomotion without relying on any hierarchical structure. The results obtained are expected to shed new light on design scheme for autonomous decentralized control system.
AB - Animals exhibit astoundingly adaptive and supple locomotion under real world constraints. In order to endow robots with similar capabilities, we must implement many degrees of freedom, equivalent to animals, into the robots' bodies. For taming many degrees of freedom, the concept of autonomous decentralized control plays a pivotal role. However, a systematic way of designing such autonomous decentralized control system is still missing. Aiming at understanding the principles that underlie animals' locomotion, in our early studies, we focused on plasmodium of true slime mold, a primitive living organism, and extracted a design scheme for autonomous decentralized control system. In order to demonstrate the relevance of this design scheme, this paper presents a soft-bodied fluid-driven amoeboid robot inspired by plasmodium of true slime mold. The significant features of this robot are twofold: (1) the robot has fluidic circuit (i.e., cylinders and nylon tubes filled with fluid) and truly soft and deformable body stemming from real-time tunable springs, the former serves as protoplasm and the latter is used for elastic actuators; and (2) a fully decentralized control using coupled oscillators with completely local sensory feedback mechanism is realized by exploiting the long-distance physical interaction between the body parts stemming from the law of conservation of protoplasmic mass. The experimental results show that this robot exhibits truly supple locomotion without relying on any hierarchical structure. The results obtained are expected to shed new light on design scheme for autonomous decentralized control system.
UR - http://www.scopus.com/inward/record.url?scp=78651512559&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=78651512559&partnerID=8YFLogxK
U2 - 10.1109/IROS.2010.5651149
DO - 10.1109/IROS.2010.5651149
M3 - Conference contribution
AN - SCOPUS:78651512559
SN - 9781424466757
T3 - IEEE/RSJ 2010 International Conference on Intelligent Robots and Systems, IROS 2010 - Conference Proceedings
SP - 2401
EP - 2406
BT - IEEE/RSJ 2010 International Conference on Intelligent Robots and Systems, IROS 2010 - Conference Proceedings
T2 - 23rd IEEE/RSJ 2010 International Conference on Intelligent Robots and Systems, IROS 2010
Y2 - 18 October 2010 through 22 October 2010
ER -