A Siegel modular threefold and Saito-Kurokawa type lift to S 31,3(2))

Takeo Okazaki, Takuya Yamauchi

研究成果: Article査読

1 被引用数 (Scopus)

抄録

Hulek and others conjectured that the unique differential three-form F (up to scalar) on the Siegel threefold associated to the group Γ 1,3(2) comes from the Saito-Kurokawa lift of the elliptic newform h of weight 4 for Γ0(6). This F have been already constructed as a Borcherds product (cf. Gritsenko and Hulek in Int Math Res Notices 17:915-937, 1999). In this paper, we prove this conjecture by using the Yoshida lift and we settle a conjecture which relates our theorem. A remarkable fact is that the Yoshida lift using the usual test function cannot give the Saito-Kurokawa type lift of weight 3 associated to the group Γ1,3(2). So important task is to find special test functions for the Yoshida lift at the bad primes 2 and 3.

本文言語English
ページ(範囲)589-601
ページ数13
ジャーナルMathematische Annalen
341
3
DOI
出版ステータスPublished - 2008 7月 1
外部発表はい

ASJC Scopus subject areas

  • 数学 (全般)

フィンガープリント

「A Siegel modular threefold and Saito-Kurokawa type lift to S 31,3(2))」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル