A robust incremental principal component analysis for feature extraction from stream data with missing values

Daijiro Aoki, Toshiaki Omori, Seiichi Ozawa

研究成果: Conference contribution

1 被引用数 (Scopus)

抄録

In this paper, we propose a robust incremental principal component analysis (IPCA) for stream data that can handle missing values on an ongoing basis. In the proposed IPCA, a missing value is substituted with the value estimated from a conditional probability density function. The conditional probability density functions are incrementally updated when new data are given. In the experiments, we evaluate the performance for both artificial and real data sets through the comparison with the two conventional approaches to handing missing values. We first investigate the estimation errors of missing values. The experimental results demonstrate that the proposed IPCA gives lower estimation errors compared to the other approaches. Next, we investigate the approximation accuracy of eigenvectors. The results show that the proposed IPCA has relatively good accuracy of eigenvectors not only for major components but also for minor components.

本文言語English
ホスト出版物のタイトル2013 International Joint Conference on Neural Networks, IJCNN 2013
DOI
出版ステータスPublished - 2013
イベント2013 International Joint Conference on Neural Networks, IJCNN 2013 - Dallas, TX, United States
継続期間: 2013 8 42013 8 9

出版物シリーズ

名前Proceedings of the International Joint Conference on Neural Networks

Other

Other2013 International Joint Conference on Neural Networks, IJCNN 2013
国/地域United States
CityDallas, TX
Period13/8/413/8/9

ASJC Scopus subject areas

  • ソフトウェア
  • 人工知能

フィンガープリント

「A robust incremental principal component analysis for feature extraction from stream data with missing values」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル