A reformulation of the Siegel series and intersection numbers

Sungmun Cho, Takuya Yamauchi

研究成果: Article査読

抄録

In this paper, we will explain a conceptual reformulation and inductive formula of the Siegel series. Using this, we will explain that both sides of the local intersection multiplicities of Gross and Keating (Invent Math 112(225–245):2051, 1993) and the Siegel series have the same inherent structures, beyond matching values. As an application, we will prove a new identity between the intersection number of two modular correspondences over Fp and the sum of the Fourier coefficients of the Siegel-Eisenstein series for Sp 4/ Q of weight 2, which is independent of p(> 2). In addition, we will explain a description of the local intersection multiplicities of the special cycles over Fp on the supersingular locus of the ‘special fiber’ of the Shimura varieties for GSpin (n, 2) , n≤ 3 in terms of the Siegel series directly.

本文言語English
ページ(範囲)1757-1826
ページ数70
ジャーナルMathematische Annalen
377
3-4
DOI
出版ステータスPublished - 2020 8 1

ASJC Scopus subject areas

  • Mathematics(all)

フィンガープリント 「A reformulation of the Siegel series and intersection numbers」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル