A higher-dimensional generalization of Lichtenbaum duality in terms of the Albanese map

研究成果: Article査読

1 被引用数 (Scopus)

抄録

In this article, we present a conjectural formula describing the cokernel of the Albanese map of zero-cycles of smooth projective varieties over -adic fields in terms of the Néron-Severi group and provide a proof under additional assumptions on an integral model of . The proof depends on a non-degeneracy result of Brauer-Manin pairing due to Saito-Sato and on Gabber-de Jong's comparison result of cohomological and Azumaya-Brauer groups. We will also mention the local-global problem for the Albanese cokernel; the abelian group on the 'local side' turns out to be a finite group.

本文言語English
ページ(範囲)1915-1934
ページ数20
ジャーナルCompositio Mathematica
152
9
DOI
出版ステータスPublished - 2016 9月 1
外部発表はい

ASJC Scopus subject areas

  • 代数と数論

フィンガープリント

「A higher-dimensional generalization of Lichtenbaum duality in terms of the Albanese map」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル