A generalization of Sen-Brinon's theory

研究成果: Article査読

抄録

Let K be a complete discrete valuation field of mixed characteristic and k be its residue field of prime characteristic p > 0. We assume that [k: kp] = ph < ∞. Let GK be the absolute Galois group of K and R be a Banach algebra over Cp:=K̄̂ with a continuous action of GK. When k is perfect (i.e. h = 0), Sen studied the Galois cohomology H1(GK, R*) and Sen's operator associated to each class (Sen Ann Math 127:647-661, 1988). In this paper we generalize Sen's theory to the case h ≥ 0 by using Brinon's theory (Brinon Math Ann 327:793-813, 2003). We also give another formulation of Brinon's theorem (à la Colmez).

本文言語English
ページ(範囲)327-346
ページ数20
ジャーナルmanuscripta mathematica
133
3-4
DOI
出版ステータスPublished - 2010
外部発表はい

ASJC Scopus subject areas

  • 数学 (全般)

フィンガープリント

「A generalization of Sen-Brinon's theory」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル