A fast On-Line algorithm for the longest common subsequence problem with constant alphabet

研究成果: Article査読

3 被引用数 (Scopus)

抄録

This article presents an algorithm that solves an on-line version of the longest common subsequence (LCS) problem for two strings over a constant alphabet in O(d+n) time and O(m+d) space, where m is the length of the shorter string, the whole of which is given to the algorithm in advance, n is the length of the longer string, which is given as a data stream, and d is the number of dominant matches between the two strings. A new upper bound, O(p(m - q)), of d is also presented, where p is the length of the LCS of the two strings, and q is the length of the LCS of the shorter string and the m-length prefix of the longer string.

本文言語English
ページ(範囲)354-361
ページ数8
ジャーナルIEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences
E-95-A
1
DOI
出版ステータスPublished - 2012 1

ASJC Scopus subject areas

  • 信号処理
  • コンピュータ グラフィックスおよびコンピュータ支援設計
  • 電子工学および電気工学
  • 応用数学

フィンガープリント

「A fast On-Line algorithm for the longest common subsequence problem with constant alphabet」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル