A convolutional neural network VLSI for image recognition using merged/mixed analog-digital architecture

Keisuke Korekado, Takashi Morie, Osamu Nomura, Hiroshi Ando, Teppei Nakano, Masakazu Matsugu, Atsushi Iwata

研究成果: Conference article査読

20 被引用数 (Scopus)

抄録

Hierarchical convolutional neural networks are a well-known robust image-recognition model. In order to apply this model to robot vision or various intelligent vision systems, its VLSI implementation with high performance and low power consumption is required. This paper proposes a convolutional network VLSI architecture using a hybrid approach composed of pulse-width modulation (PWM) and digital circuits. We call this approach merged/mixed analog-digital architecture. The VLSI includes PWM neuron circuits, PWM/digital converters, digital adder-subtracters, and digital memory. We have designed and fabricated a VLSI chip by using a 0.35 μn CMOS process. The VLSI chip can perform 6-bit precision convolution calculations for an image of 100x100 pixels with a receptive field area of up to 20x20 pixels within 5 ms, which means a performance of 2 GOPS. Power consumption of PWM neuron circuits is estimated to be 20 mW. We have verified successful operations using a fabricated VLSI chip.

本文言語English
ページ(範囲)169-175
ページ数7
ジャーナルLecture Notes in Artificial Intelligence (Subseries of Lecture Notes in Computer Science)
2774 PART 2
DOI
出版ステータスPublished - 2003
外部発表はい
イベント7th International Conference, KES 2003 - Oxford, United Kingdom
継続期間: 2003 9月 32003 9月 5

ASJC Scopus subject areas

  • 理論的コンピュータサイエンス
  • コンピュータ サイエンス(全般)

フィンガープリント

「A convolutional neural network VLSI for image recognition using merged/mixed analog-digital architecture」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル