A constructive proof for the induction of M-convex functions through networks

A. Shioura

研究成果: Article査読

5 被引用数 (Scopus)

抄録

Murota (1995) introduced an M-convex function as a quantitative generalization of the set of integral vectors in an integral base polyhedron as well as an extension of valuated matroid over base polyhedron. Just as a base polyhedron can be transformed through a network, an M-convex function can be induced through a network. This paper gives a constructive proof for the induction of an M-convex function. The proof is based on the correctness of a simple algorithm, which finds an exchangeable element. We also analyze a behavior of induced functions when they take the value -∞.

本文言語English
ページ(範囲)271-278
ページ数8
ジャーナルDiscrete Applied Mathematics
82
1-3
DOI
出版ステータスPublished - 1998 3 2

ASJC Scopus subject areas

  • Discrete Mathematics and Combinatorics
  • Applied Mathematics

フィンガープリント 「A constructive proof for the induction of M-convex functions through networks」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル