A Characterization of Graphs with Fractional Total Chromatic Number Equal to Δ + 2

Takehiro Ito, W. Sean Kennedy, Bruce A. Reed

研究成果: Article査読

4 被引用数 (Scopus)

抄録

For a simple graph of maximum degree Δ, the complexity of computing the fractional total chromatic number is unknown. Trivially it is at least Δ + 1. Kilakos and Reed proved that it is at most Δ + 2. In this paper, we strengthen this by characterizing exactly those simple graphs with fractional total chromatic number Δ + 2. This yields a simple linear-time algorithm to determine whether a given graph has fractional chromatic number Δ + 2. Crown

本文言語English
ページ(範囲)235-240
ページ数6
ジャーナルElectronic Notes in Discrete Mathematics
35
C
DOI
出版ステータスPublished - 2009 12 1

ASJC Scopus subject areas

  • 離散数学と組合せ数学
  • 応用数学

フィンガープリント

「A Characterization of Graphs with Fractional Total Chromatic Number Equal to Δ + 2」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル