Young's modulus and fatigue investigation of aluminum nitride films deposited on 304 stainless steel foils using micro-fabricated cantilevers

Qiu Zheng, Le Van Minh, Hiroki Kuwano

Research output: Contribution to journalArticlepeer-review

5 Citations (Scopus)


Aluminum nitride based (AlN-based) piezoelectric vibration energy harvesters (PVEHs) have been received much attention in the power generation for the device in microelectromechanical systems (MEMS). During the long-time vibration, PVEHs are suffering cyclically dynamic stress. This may result in the defect of the materials, and finally cause the failure of the device. To achieve a reliable design of the device that can work for a long time without failure, the investigation on the mechanical properties of Young's modulus and fatigue were conducted for AlN films deposited on 304 stainless steel (SUS 304) foils in this study. Two kinds of materials were tested, SUS 304 foils with a thickness of 50 μm (SUS 304 (50 μm)) and a composite material of AlN films deposited on both sides of SUS 304 foils (AlN (1 μm)/ SUS 304 (50 μm)/ AlN (1 μm) structure). The samples were micro-fabricated to cantilevers. Young's modulus was measured by the micro-cantilever resonance method. The resonant bending fatigue testing method was used to investigate the fatigue properties of the materials. The displacement amplitude of the samples was recorded during the tests. A new criterion by using the change of amplitude versus number of cycles was proposed to define the fatigue life. As results, the Young's modulus was 184.9 and 342.9 MPa, for SUS 304 foil and AlN film, respectively. Stress-cycle (S-N) curves were plotted by using the proposed criterion successfully. The fatigue strength of SUS 304 foils and the material with AlN/ SUS 304/ AlN structure was estimated to be 294 and 327 MPa, respectively. Fatigue failures of stable crack, intrusions and extrusions, and slip bands, appeared on the surface of SUS 304 foils after the long time vibration. No fatigue failure or surface defect was observed on AlN films.

Original languageEnglish
Pages (from-to)173-181
Number of pages9
JournalSensors and Actuators, A: Physical
Publication statusPublished - 2019 Jan 1


  • 304 Stainless steel foil
  • Aluminum nitride film
  • Fatigue
  • Micro-fabricated cantilever
  • Young's modulus

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Instrumentation
  • Condensed Matter Physics
  • Surfaces, Coatings and Films
  • Metals and Alloys
  • Electrical and Electronic Engineering


Dive into the research topics of 'Young's modulus and fatigue investigation of aluminum nitride films deposited on 304 stainless steel foils using micro-fabricated cantilevers'. Together they form a unique fingerprint.

Cite this