X-ray study of ferroic octupole order producing anomalous Hall effect

Motoi Kimata, Norimasa Sasabe, Kensuke Kurita, Yuichi Yamasaki, Chihiro Tabata, Yuichi Yokoyama, Yoshinori Kotani, Muhammad Ikhlas, Takahiro Tomita, Kenta Amemiya, Hiroyuki Nojiri, Satoru Nakatsuji, Takashi Koretsune, Hironori Nakao, Taka hisa Arima, Tetsuya Nakamura

Research output: Contribution to journalArticlepeer-review

Abstract

Recently found anomalous Hall, Nernst, magnetooptical Kerr, and spin Hall effects in the antiferromagnets Mn3X (X = Sn, Ge) are attracting much attention for spintronics and energy harvesting. Since these materials are antiferromagnets, the origin of these functionalities is expected to be different from that of conventional ferromagnets. Here, we report the observation of ferroic order of magnetic octupole in Mn3Sn by X-ray magnetic circular dichroism, which is only predicted theoretically so far. The observed signals are clearly decoupled with the behaviors of uniform magnetization, indicating that the present X-ray magnetic circular dichroism is not arising from the conventional magnetization. We have found that the appearance of this anomalous signal coincides with the time reversal symmetry broken cluster magnetic octupole order. Our study demonstrates that the exotic material functionalities are closely related to the multipole order, which can produce unconventional cross correlation functionalities.

Original languageEnglish
Article number5582
JournalNature communications
Volume12
Issue number1
DOIs
Publication statusPublished - 2021 Dec

ASJC Scopus subject areas

  • Chemistry(all)
  • Biochemistry, Genetics and Molecular Biology(all)
  • Physics and Astronomy(all)

Fingerprint

Dive into the research topics of 'X-ray study of ferroic octupole order producing anomalous Hall effect'. Together they form a unique fingerprint.

Cite this