What if ALP dark matter for the XENON1T excess is the inflaton

Research output: Contribution to journalArticlepeer-review

2 Citations (Scopus)

Abstract

The recent XENON1T excess in the electron recoil data can be explained by anomaly-free axion-like particle (ALP) dark matter with mass mϕ = 2.3 ± 0.2 keV and the decay constant fϕ/qe≃2×1010Ωϕ/ΩDM GeV. Intriguingly, the suggested mass and decay constant are consistent with the relation, fϕ∼103mϕMp, predicted in a scenario where the ALP plays the role of the inflaton. This raises a possibility that the ALP dark matter responsible for the XENON1T excess also drove inflation in the very early universe. We study implications of the XENON1T excess for the ALP inflation and thermal history of the universe after inflation. We find that the successful reheating requires the ALP couplings to heavy fermions in the standard model, which results in an instantaneous reheating and subsequent thermalization of the ALPs. Then, an entropy dilution of O(10) is necessary to explain the XENON1T excess, which can be achieved by decays of the right-handed neutrinos.

Original languageEnglish
Article number152
JournalJournal of High Energy Physics
Volume2021
Issue number1
DOIs
Publication statusPublished - 2021 Jan

Keywords

  • Beyond Standard Model
  • Cosmology of Theories beyond the SM
  • Effective Field Theories

ASJC Scopus subject areas

  • Nuclear and High Energy Physics

Fingerprint Dive into the research topics of 'What if ALP dark matter for the XENON1T excess is the inflaton'. Together they form a unique fingerprint.

Cite this