TY - GEN
T1 - Voting with a logarithmic number of cards
AU - Mizuki, Takaaki
AU - Asiedu, Isaac Kobina
AU - Sone, Hideaki
N1 - Copyright:
Copyright 2021 Elsevier B.V., All rights reserved.
PY - 2013
Y1 - 2013
N2 - Consider an election where there are two candidates and several voters. Such an election usually requires the same number of ballot papers as the number of voters. In this paper, we show that such an election can be conducted using only a logarithmic number of cards with two suits - black and red - with identical backs. That is, we can securely compute the summation of a number of inputs (0s and 1s) using a logarithmic number of cards with respect to the number of inputs.
AB - Consider an election where there are two candidates and several voters. Such an election usually requires the same number of ballot papers as the number of voters. In this paper, we show that such an election can be conducted using only a logarithmic number of cards with two suits - black and red - with identical backs. That is, we can securely compute the summation of a number of inputs (0s and 1s) using a logarithmic number of cards with respect to the number of inputs.
UR - http://www.scopus.com/inward/record.url?scp=84886001440&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84886001440&partnerID=8YFLogxK
U2 - 10.1007/978-3-642-39074-6_16
DO - 10.1007/978-3-642-39074-6_16
M3 - Conference contribution
AN - SCOPUS:84886001440
SN - 9783642390739
T3 - Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
SP - 162
EP - 173
BT - Unconventional Computation and Natural Computation - 12th International Conference, UCNC 2013, Proceedings
PB - Springer Verlag
T2 - 12th International Conference on Unconventional Computation and Natural Computation, UCNC 2013
Y2 - 1 July 2013 through 5 July 2013
ER -