TY - JOUR
T1 - Viral mutation accelerated by nitric oxide production during infection in vivo
AU - Akaike, Takaaki
AU - Fujii, Shigemoto
AU - Kato, Atsushi
AU - Yoshitake, Jun
AU - Miyamoto, Yoichi
AU - Sawa, Tomohiro
AU - Okamoto, Shinichiro
AU - Suga, Morttaka
AU - Asakawa, Makoto
AU - Nagai, Yoshiyuki
AU - Maeda, Hiroshi
N1 - Copyright:
Copyright 2020 Elsevier B.V., All rights reserved.
PY - 2000
Y1 - 2000
N2 - Nitric oxide (NO), superoxide (O2-), and their reaction product peroxynitrite (ONOO-) are generated in excess during a host's response against viral infection, and contribute to viral pathogenesis by promoting oxidative stress and tissue injury. Here we demonstrate that NO and peroxynitrite greatly accelerates the mutation of Sendai virus (SeV), a nonsegmented negative-strand RNA virus, by using green fluorescent protein (GFP) inserted into and expressed by a recombinant SeV (GFP-SeV) as an indicator for mutation. GFP-SeV mutation frequencies were much higher in the wild-type mice than in those lacking inducible NO synthase, suggesting that mutation of the virus in vivo is NO dependent. High levels of NO and NO- mediated oxidative stress were induced by GFP-SeV infection in the lung of the wild-type mice, but not in the iNOS-deficient mice, as evidenced by electron spin resonance spectroscopy and immunohistochemical analysis for nitrotyrosine formation as well as histopathological examination. Furthermore, peroxynitrite, an NO-derived reactive nitrogen intermediate, enhanced viral mutation in vitro. These results indicate that the oxidative stress induced by NO produced during the natural course of viral infection increases mutation, expands the quasispecies spectrum, and facilitates evolution of RNA viruses.
AB - Nitric oxide (NO), superoxide (O2-), and their reaction product peroxynitrite (ONOO-) are generated in excess during a host's response against viral infection, and contribute to viral pathogenesis by promoting oxidative stress and tissue injury. Here we demonstrate that NO and peroxynitrite greatly accelerates the mutation of Sendai virus (SeV), a nonsegmented negative-strand RNA virus, by using green fluorescent protein (GFP) inserted into and expressed by a recombinant SeV (GFP-SeV) as an indicator for mutation. GFP-SeV mutation frequencies were much higher in the wild-type mice than in those lacking inducible NO synthase, suggesting that mutation of the virus in vivo is NO dependent. High levels of NO and NO- mediated oxidative stress were induced by GFP-SeV infection in the lung of the wild-type mice, but not in the iNOS-deficient mice, as evidenced by electron spin resonance spectroscopy and immunohistochemical analysis for nitrotyrosine formation as well as histopathological examination. Furthermore, peroxynitrite, an NO-derived reactive nitrogen intermediate, enhanced viral mutation in vitro. These results indicate that the oxidative stress induced by NO produced during the natural course of viral infection increases mutation, expands the quasispecies spectrum, and facilitates evolution of RNA viruses.
KW - NO
KW - Oxidative stress
KW - Peroxynitrite
UR - http://www.scopus.com/inward/record.url?scp=17544375439&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=17544375439&partnerID=8YFLogxK
U2 - 10.1096/fasebj.14.10.1447
DO - 10.1096/fasebj.14.10.1447
M3 - Article
C2 - 10877838
AN - SCOPUS:17544375439
VL - 14
SP - 1447
EP - 1454
JO - FASEB Journal
JF - FASEB Journal
SN - 0892-6638
IS - 10
ER -