Viable chaotic inflation as a source of neutrino masses and leptogenesis

Kazunori Nakayama, Fuminobu Takahashi, Tsutomu T. Yanagida

Research output: Contribution to journalArticlepeer-review

11 Citations (Scopus)


We show that the seesaw mechanism as well as leptogenesis are natural outcomes of a viable chaotic inflation in supergravity. The inflation model contains two superfields, the inflaton and stabilizer fields, which, being singlets under the standard model gauge symmetry, naturally couple to the lepton and Higgs doublets. The inflaton decays into leptons and Higgs fields, and the reheating temperature is predicted to be of O(1013) GeV, for which thermal leptogenesis is possible. On the other hand, gravitinos are copiously produced, and various solutions to the gravitino problem are discussed. We also argue that, if the shift symmetry of the inflaton is explicitly broken down to a discrete one, neutrino Yukawa couplings are periodic in the inflaton field, and masses of leptons and Higgs do not blow up even if the inflaton takes super-Planckian field values. The inflaton potential is given by a sum of sinusoidal functions with different height and periodicity, the so-called multi-natural inflation. We show that the predicted scalar spectral index and tensor-to-scalar ratio lie in the region favored by the Planck data.

Original languageEnglish
Pages (from-to)32-38
Number of pages7
JournalPhysics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics
Publication statusPublished - 2016 Jun 10

ASJC Scopus subject areas

  • Nuclear and High Energy Physics


Dive into the research topics of 'Viable chaotic inflation as a source of neutrino masses and leptogenesis'. Together they form a unique fingerprint.

Cite this