Abstract
We study viable small-field Coleman-Weinberg (CW) inflation models with the help of nonminimal coupling to gravity. The simplest small-field CW inflation model (with a low-scale potential minimum) is incompatible with the cosmological constraint on the scalar spectral index. However, there are possibilities to make the model realistic. First, we revisit the CW inflation model supplemented with a linear potential term. We next consider the CW inflation model with a logarithmic nonminimal coupling and illustrate that the model can open a new viable parameter space that includes the model with a linear potential term. We also show parameter spaces where the Hubble scale during the inflation can be as small as 10-4 GeV, 1 GeV, 104 GeV, and 108 GeV for the number of e-folds of 40, 45, 50, and 55, respectively, with other cosmological constraints being satisfied.
Original language | English |
---|---|
Article number | 063004 |
Journal | Physical Review D |
Volume | 97 |
Issue number | 6 |
DOIs | |
Publication status | Published - 2018 Mar 15 |
ASJC Scopus subject areas
- Nuclear and High Energy Physics
Access to Document
Other files and links
Fingerprint
Dive into the research topics of 'Very low scale Coleman-Weinberg inflation with nonminimal coupling'. Together they form a unique fingerprint.Cite this
- APA
- Standard
- Harvard
- Vancouver
- Author
- BIBTEX
- RIS
Very low scale Coleman-Weinberg inflation with nonminimal coupling. / Kaneta, Kunio; Seto, Osamu; Takahashi, Ryo.
In: Physical Review D, Vol. 97, No. 6, 063004, 15.03.2018.Research output: Contribution to journal › Article › peer-review
}
TY - JOUR
T1 - Very low scale Coleman-Weinberg inflation with nonminimal coupling
AU - Kaneta, Kunio
AU - Seto, Osamu
AU - Takahashi, Ryo
N1 - Funding Information: This work was supported by IBS under Project No.IBS-R018-D1. Funding Information: This work was supported by IBS under Project No. IBS-R018-D1. [1] 1 A. A. Starobinsky , Phys. Lett. 91B , 99 ( 1980 ). PYLBAJ 0370-2693 10.1016/0370-2693(80)90670-X [2] 2 K. Sato , Mon. Not. R. Astron. Soc. 195 , 467 ( 1981 ). MNRAA4 0035-8711 10.1093/mnras/195.3.467 [3] 3 A. H. Guth , Phys. Rev. D 23 , 347 ( 1981 ). PRVDAQ 0556-2821 10.1103/PhysRevD.23.347 [4] 4a V. F. Mukhanov and G. V. Chibisov , Pis’ma Zh. Eksp. Teor. Fiz. 33 , 549 ( 1981 ) PZETAB 0370-274X 4b [ V. F. Mukhanov and G. V. Chibisov JETP Lett. 33 , 532 ( 1981 )]. JTPLA2 0021-3640 [5] 5 S. W. Hawking , Phys. Lett. 115B , 295 ( 1982 ). PYLBAJ 0370-2693 10.1016/0370-2693(82)90373-2 [6] 6 A. A. Starobinsky , Phys. Lett. 117B , 175 ( 1982 ). PYLBAJ 0370-2693 10.1016/0370-2693(82)90541-X [7] 7 A. H. Guth and S. Y. Pi , Phys. Rev. Lett. 49 , 1110 ( 1982 ). PRLTAO 0031-9007 10.1103/PhysRevLett.49.1110 [8] 8 A. D. Linde , Phys. Lett. 129B , 177 ( 1983 ). PYLBAJ 0370-2693 10.1016/0370-2693(83)90837-7 [9] 9 J. H. Kung and R. H. Brandenberger , Phys. Rev. D 42 , 1008 ( 1990 ). PRVDAQ 0556-2821 10.1103/PhysRevD.42.1008 [10] 10 R. D. Peccei and H. R. Quinn , Phys. Rev. Lett. 38 , 1440 ( 1977 ). PRLTAO 0031-9007 10.1103/PhysRevLett.38.1440 [11] 11 R. D. Peccei and H. R. Quinn , Phys. Rev. D 16 , 1791 ( 1977 ). PRVDAQ 0556-2821 10.1103/PhysRevD.16.1791 [12] 12 M. Axenides , R. H. Brandenberger , and M. S. Turner , Phys. Lett. 126B , 178 ( 1983 ). PYLBAJ 0370-2693 10.1016/0370-2693(83)90586-5 [13] 13 D. Seckel and M. S. Turner , Phys. Rev. D 32 , 3178 ( 1985 ). PRVDAQ 0556-2821 10.1103/PhysRevD.32.3178 [14] 14 A. D. Linde , Phys. Lett. 158B , 375 ( 1985 ). PYLBAJ 0370-2693 10.1016/0370-2693(85)90436-8 [15] 15 M. S. Turner and F. Wilczek , Phys. Rev. Lett. 66 , 5 ( 1991 ). PRLTAO 0031-9007 10.1103/PhysRevLett.66.5 [16] 16 P. A. R. Ade ( Planck Collaboration ) , Astron. Astrophys. 594 , A20 ( 2016 ). AAEJAF 0004-6361 10.1051/0004-6361/201525898 [17] 17 I. Affleck and M. Dine , Nucl. Phys. B249 , 361 ( 1985 ). NUPBBO 0550-3213 10.1016/0550-3213(85)90021-5 [18] 18 M. Dine , L. Randall , and S. D. Thomas , Nucl. Phys. B458 , 291 ( 1996 ). NUPBBO 0550-3213 10.1016/0550-3213(95)00538-2 [19] 19 K. Enqvist and J. McDonald , Nucl. Phys. B538 , 321 ( 1999 ). NUPBBO 0550-3213 10.1016/S0550-3213(98)00695-6 [20] 20 L. Roszkowski and O. Seto , Phys. Rev. Lett. 98 , 161304 ( 2007 ). PRLTAO 0031-9007 10.1103/PhysRevLett.98.161304 [21] 21 O. Seto and M. Yamaguchi , Phys. Rev. D 75 , 123506 ( 2007 ). PRVDAQ 1550-7998 10.1103/PhysRevD.75.123506 [22] 22 D. V. Nanopoulos , K. A. Olive , and M. Srednicki , Phys. Lett. 127B , 30 ( 1983 ). PYLBAJ 0370-2693 10.1016/0370-2693(83)91624-6 [23] 23 M. Y. Khlopov and A. D. Linde , Phys. Lett. 138B , 265 ( 1984 ). PYLBAJ 0370-2693 10.1016/0370-2693(84)91656-3 [24] 24 J. R. Ellis , J. E. Kim , and D. V. Nanopoulos , Phys. Lett. 145B , 181 ( 1984 ). PYLBAJ 0370-2693 10.1016/0370-2693(84)90334-4 [25] 25 M. Kawasaki , K. Kohri , T. Moroi , and A. Yotsuyanagi , Phys. Rev. D 78 , 065011 ( 2008 ). PRVDAQ 1550-7998 10.1103/PhysRevD.78.065011 [26] 26 R. H. Cyburt , J. Ellis , B. D. Fields , F. Luo , K. A. Olive , and V. C. Spanos , J. Cosmol. Astropart. Phys. 10 ( 2009 ) 021 . JCAPBP 1475-7516 10.1088/1475-7516/2009/10/021 [27] 27 P. W. Graham , D. E. Kaplan , and S. Rajendran , Phys. Rev. Lett. 115 , 221801 ( 2015 ). PRLTAO 0031-9007 10.1103/PhysRevLett.115.221801 [28] 28 T. Kobayashi , O. Seto , T. Shimomura , and Y. Urakawa , Mod. Phys. Lett. A 32 , 1750142 ( 2017 ). MPLAEQ 0217-7323 10.1142/S0217732317501425 [29] 29 K. Choi and S. H. Im , J. High Energy Phys. 12 ( 2016 ) 093 . JHEPFG 1029-8479 10.1007/JHEP12(2016)093 [30] 30 B. Batell , G. F. Giudice , and M. McCullough , J. High Energy Phys. 12 ( 2015 ) 162 . JHEPFG 1029-8479 10.1007/JHEP12(2015)162 [31] 31 S. Di Chiara , K. Kannike , L. Marzola , A. Racioppi , M. Raidal , and C. Spethmann , Phys. Rev. D 93 , 103527 ( 2016 ). PRVDAQ 2470-0010 10.1103/PhysRevD.93.103527 [32] 32 J. L. Evans , T. Gherghetta , N. Nagata , and Z. Thomas , J. High Energy Phys. 09 ( 2016 ) 150 . JHEPFG 1029-8479 10.1007/JHEP09(2016)150 [33] 33 J. L. Evans , T. Gherghetta , N. Nagata , and M. Peloso , Phys. Rev. D 95 , 115027 ( 2017 ). PRVDAQ 2470-0010 10.1103/PhysRevD.95.115027 [34] 34 A. Hook and G. Marques-Tavares , J. High Energy Phys. 12 ( 2016 ) 101 . JHEPFG 1029-8479 10.1007/JHEP12(2016)101 [35] 35 T. Higaki , N. Takeda , and Y. Yamada , Phys. Rev. D 95 , 015009 ( 2017 ). PRVDAQ 2470-0010 10.1103/PhysRevD.95.015009 [36] 36 K. Choi , H. Kim , nd T. Sekiguchi , Phys. Rev. D 95 , 075008 ( 2017 ). PRVDAQ 2470-0010 10.1103/PhysRevD.95.075008 [37] 37 S. R. Coleman and E. J. Weinberg , Phys. Rev. D 7 , 1888 ( 1973 ). PRVDAQ 0556-2821 10.1103/PhysRevD.7.1888 [38] 38 A. D. Linde , Phys. Lett. 108B , 389 ( 1982 ). PYLBAJ 0370-2693 10.1016/0370-2693(82)91219-9 [39] 39 A. Albrecht and P. J. Steinhardt , Phys. Rev. Lett. 48 , 1220 ( 1982 ). PRLTAO 0031-9007 10.1103/PhysRevLett.48.1220 [40] 40 Q. Shafi and A. Vilenkin , Phys. Rev. Lett. 52 , 691 ( 1984 ). PRLTAO 0031-9007 10.1103/PhysRevLett.52.691 [41] 41 G. Barenboim , E. J. Chun , and H. M. Lee , Phys. Lett. B 730 , 81 ( 2014 ). PYLBAJ 0370-2693 10.1016/j.physletb.2014.01.039 [42] 42 N. Okada , V. N. Şenoğuz , and Q. Shafi , Turk. J. Phys. 40 , 150 ( 2016 ). TJPHEY 1300-0101 10.3906/fiz-1505-7 [43] 43 Q. Shafi and V. N. Senoguz , Phys. Rev. D 73 , 127301 ( 2006 ). PRVDAQ 1550-7998 10.1103/PhysRevD.73.127301 [44] 44 M. U. Rehman , Q. Shafi , and J. R. Wickman , Phys. Rev. D 78 , 123516 ( 2008 ). PRVDAQ 1550-7998 10.1103/PhysRevD.78.123516 [45] 45 K. Kannike , A. Racioppi , and M. Raidal , J. High Energy Phys. 01 ( 2016 ) 035 . JHEPFG 1029-8479 10.1007/JHEP01(2016)035 [46] 46 L. Marzola , A. Racioppi , M. Raidal , F. R. Urban , and H. Veermae , J. High Energy Phys. 03 ( 2016 ) 190 . JHEPFG 1029-8479 10.1007/JHEP03(2016)190 [47] 47 L. Marzola and A. Racioppi , J. Cosmol. Astropart. Phys. 10 ( 2016 ) 010 . JCAPBP 1475-7516 10.1088/1475-7516/2016/10/010 [48] 48 M. Artymowski and A. Racioppi , J. Cosmol. Astropart. Phys. 04 ( 2017 ) 007 . JCAPBP 1475-7516 10.1088/1475-7516/2017/04/007 [49] 49 S. Iso , K. Kohri , and K. Shimada , Phys. Rev. D 91 , 044006 ( 2015 ). PRVDAQ 1550-7998 10.1103/PhysRevD.91.044006 [50] 50 P. A. R. Ade ( BICEP2 and Keck Array Collaborations ) , Phys. Rev. Lett. 116 , 031302 ( 2016 ). PRLTAO 0031-9007 10.1103/PhysRevLett.116.031302 [51] 51 A. R. Liddle and D. H. Lyth , Phys. Rep. 231 , 1 ( 1993 ). PRPLCM 0370-1573 10.1016/0370-1573(93)90114-S [52] 52 D. H. Lyth and A. Riotto , Phys. Rep. 314 , 1 ( 1999 ). PRPLCM 0370-1573 10.1016/S0370-1573(98)00128-8 [53] 53 A. R. Liddle and S. M. Leach , Phys. Rev. D 68 , 103503 ( 2003 ). PRVDAQ 0556-2821 10.1103/PhysRevD.68.103503 [54] 54 A. De Simone , M. P. Hertzberg , and F. Wilczek , Phys. Lett. B 678 , 1 ( 2009 ). PYLBAJ 0370-2693 10.1016/j.physletb.2009.05.054 [55] 55a I. L. Buchbinder and S. D. Odintsov , Yad. Fiz. 42 , 1268 ( 1985 ); IDFZA7 0044-0027 55b I. L. Buchbinder and S. D. Odintsov Classical Quantum Gravity 2 , 721 ( 1985 ). CQGRDG 0264-9381 10.1088/0264-9381/2/5/014 [56] 56a E. Elizalde and S. D. Odintsov , Phys. Lett. B 303 , 240 ( 1993 ); PYLBAJ 0370-2693 10.1016/0370-2693(93)91427-O 56b E. Elizalde and S. D. Odintsov Russ. Phys. J. 37 , 25 ( 1994 ). RPJOEB 1064-8887 10.1007/BF00558917 [57] 57 A. Salvio and A. Strumia , J. High Energy Phys. 06 ( 2014 ) 080 . JHEPFG 1029-8479 10.1007/JHEP06(2014)080 [58] 58 K. Kannike , G. Hutsi , L. Pizza , A. Racioppi , M. Raidal , A. Salvio , and A. Strumia , J. High Energy Phys. 05 ( 2015 ) 065 . JHEPFG 1029-8479 10.1007/JHEP05(2015)065 [59] 59 A. Salvio , Eur. Phys. J. C 77 , 267 ( 2017 ). EPCFFB 1434-6044 10.1140/epjc/s10052-017-4825-6 [60] 60 A. Karam , T. Pappas , and K. Tamvakis , Phys. Rev. D 96 , 064036 ( 2017 ). PRVDAQ 2470-0010 10.1103/PhysRevD.96.064036 Publisher Copyright: © 2018 authors. Published by the American Physical Society.
PY - 2018/3/15
Y1 - 2018/3/15
N2 - We study viable small-field Coleman-Weinberg (CW) inflation models with the help of nonminimal coupling to gravity. The simplest small-field CW inflation model (with a low-scale potential minimum) is incompatible with the cosmological constraint on the scalar spectral index. However, there are possibilities to make the model realistic. First, we revisit the CW inflation model supplemented with a linear potential term. We next consider the CW inflation model with a logarithmic nonminimal coupling and illustrate that the model can open a new viable parameter space that includes the model with a linear potential term. We also show parameter spaces where the Hubble scale during the inflation can be as small as 10-4 GeV, 1 GeV, 104 GeV, and 108 GeV for the number of e-folds of 40, 45, 50, and 55, respectively, with other cosmological constraints being satisfied.
AB - We study viable small-field Coleman-Weinberg (CW) inflation models with the help of nonminimal coupling to gravity. The simplest small-field CW inflation model (with a low-scale potential minimum) is incompatible with the cosmological constraint on the scalar spectral index. However, there are possibilities to make the model realistic. First, we revisit the CW inflation model supplemented with a linear potential term. We next consider the CW inflation model with a logarithmic nonminimal coupling and illustrate that the model can open a new viable parameter space that includes the model with a linear potential term. We also show parameter spaces where the Hubble scale during the inflation can be as small as 10-4 GeV, 1 GeV, 104 GeV, and 108 GeV for the number of e-folds of 40, 45, 50, and 55, respectively, with other cosmological constraints being satisfied.
UR - http://www.scopus.com/inward/record.url?scp=85044823932&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85044823932&partnerID=8YFLogxK
U2 - 10.1103/PhysRevD.97.063004
DO - 10.1103/PhysRevD.97.063004
M3 - Article
AN - SCOPUS:85044823932
SN - 2470-0010
VL - 97
JO - Physical Review D
JF - Physical Review D
IS - 6
M1 - 063004
ER -