Usefulness of deep learning-assisted identification of hyperdense MCA sign in acute ischemic stroke: comparison with readers’ performance

Yuki Shinohara, Noriyuki Takahashi, Yongbum Lee, Tomomi Ohmura, Atsushi Umetsu, Fumiko Kinoshita, Keita Kuya, Ayumi Kato, Toshibumi Kinoshita

Research output: Contribution to journalArticlepeer-review

Abstract

Purpose: To evaluate the usefulness of deep learning-assisted diagnosis for identifying hyperdense middle cerebral artery sign (HMCAS) on non-contrast computed tomography in comparison with the diagnostic performance of neuroradiologists. Materials and methods: We obtained 46 HMCAS-positive and 52 HMCAS-negative test samples extracted using 50-pixel-diameter circular regions of interest. Five neuroradiologists undertook an initial diagnostic performance test by describing the HMCAS-positive prediction rate in each sample. Their diagnostic performance was compared with that of a deep convolutional neural network (DCNN) model that had been trained using another dataset in our previous study. In the second test, readers could reference the prediction rate of the DCNN model in each sample. Results: The diagnostic performance of the DCNN for HMCAS showed an accuracy of 81.6% and area under the receiver-operating characteristic curve (AUC) of 0.869, whereas the initial diagnostic performance of neuroradiologists showed an accuracy of 78.8% and AUC of 0.882. The second diagnostic test of neuroradiologists with reference to the results of the DCNN model showed an accuracy of 84.7% and AUC of 0.932. In all readers, AUC values were higher in the second test than the initial test. Conclusion: The ability of DCNN to identify HMCAS is comparable with the diagnostic performance of neuroradiologists.

Original languageEnglish
Pages (from-to)870-877
Number of pages8
JournalJapanese Journal of Radiology
Volume38
Issue number9
DOIs
Publication statusPublished - 2020 Sep 1

Keywords

  • Acute ischemic stroke
  • Deep learning
  • Hyperdense MCA sign
  • Hyperdense artery sign
  • Non-contrast CT

ASJC Scopus subject areas

  • Radiology Nuclear Medicine and imaging

Fingerprint

Dive into the research topics of 'Usefulness of deep learning-assisted identification of hyperdense MCA sign in acute ischemic stroke: comparison with readers’ performance'. Together they form a unique fingerprint.

Cite this