Use of kinetic isotope effects in mechanism studies. Isotope effects and element effects associated with Hydron-Transfer steps during alkoxide-promoted dehydrohalogenations

Heinz F. Koch, Gerrit Lodder, Judith G. Koch, David J. Bogdan, Geoffrey H. Brown, Carrie A. Carlson, Amy B. Dean, Ronald Hage, Patrick Han, Johan C.P. Hopman, Lisa A. James, Petra M. Knape, Eric C. Roos, Melissa L. Sardina, Rachael A. Sawyer, Barbara O. Scott, Charles A. Testa, Steven D. Wickham

    Research output: Contribution to journalArticlepeer-review

    16 Citations (Scopus)

    Abstract

    The Arrhenius behavior of the primary kinetic isotope effect, (k(H)/k(D))(Obs) and (k(H)/k(T))(Obs), associated with the methanolic sodium methoxide-promoted dehydrohalogenations of m-ClC6H4C(i)HClCH2Cl (I), m-CF3C6H4C(i)-HClCH2Cl (II) and p-CF3C6H4C(i)HClCH2F (III) has been used to calculate the internal-return parameters, a = k(-1)/K(Elim)(X), in a two-step mechanism featuring a hydrogen-bonded carbanion. This carbanion partitions between returning the hydron to carbon, k(-1), and the loss of halide, K(Elm)(X). Isotope effects at 25°C for I, (k(H)/k(D))(Obs) = 3.40 and (k(H)/ k(T))(Obs) = 6.20, and II, (k(H)/k(D))(Obs) = 3.49 and (k(H)/k(T))(Obs) = 6.55, result in similar values for a: a(H) = 0.59, a(D) = 0.13-0.14 and a(T) = 0.07. Smaller values of (k(H)/k(D))(Obs) = 2.19 and (k(H)/k(T))(Obs) = 3.56 for III are due to more internal return [a(H) = 1.9, a(D) = 0.50, and a(T) = 0.28] associated with the dehydrofluorination reaction. Calculation of k1 ( k(Obs) [a + 1]) results in similar isotope effects for hydron transfer in these reactions: k1(H)/k1(D) = 4.74 and k1(H)/K1(T) = 9.20; II, k1(H)/k1(D) = 4.91 and k1(H)/k1(T) = 9.75; III, k1(H)/k1(D) = 4.75 and k1(H)/k1(T) = 9.17. Reactions of m-ClC6H4C(i)HBrCH2Br and m-ClC6H4C(i)HClCH2Br have very small amounts of internal return, a(H) = 0.05 and a(D) = 0.01, and (k(H)/k(D))(Obs) = 4.95 results in k1(H)/k1(D) = 5.11 The measured isotope effects are therefore due to differences in the amount of internal return and not in the symmetry of transition state structures for the hydron transfer, and the element effect, (k(HBr)/ k(HCl)) = 29, for m-ClC6H4CHClCH2X is mainly due to the hydron-transfer step, k1(HBr)/k1(HCl) = 19, and not the breaking of the C-X bend. The kinetic solvent isotope effects, k(MeOD)/k(MeOH) ~ 2.5, are consistent with three methanols of solvation lost prior to the hydron-transfer step. The energetics associated with desolvation of methoxide ion are part of the measured reaction energetics of these systems.

    Original languageEnglish
    Pages (from-to)9965-9974
    Number of pages10
    JournalJournal of the American Chemical Society
    Volume119
    Issue number42
    DOIs
    Publication statusPublished - 1997

    ASJC Scopus subject areas

    • Catalysis
    • Chemistry(all)
    • Biochemistry
    • Colloid and Surface Chemistry

    Fingerprint Dive into the research topics of 'Use of kinetic isotope effects in mechanism studies. Isotope effects and element effects associated with Hydron-Transfer steps during alkoxide-promoted dehydrohalogenations'. Together they form a unique fingerprint.

    Cite this