Abstract
We determine an updated model of P- and S-wave attenuation (Qp, Qs) tomography of the Japan subduction zone using an improved inversion scheme, and derive the first Qp/Qs model of the study region.We establish a system of observation t? equations by taking 1/Qvalues at 3-D grid nodes arranged in the study volume as unknown parameters. This scheme can eliminate model errors caused by ignoring high-order terms of the Taylor expansion in the Q-format scheme adopted by previous studies. The inversion problem is considered as a quadratic programming problemwith bound constraints for best fitting the observed t? data in a least-squares sense. The 3-D attenuation model is obtained by using a limited-memory Broyden-Fletcher-Goldfarb-Shanno algorithm for bound constrained optimization. Because this inversion scheme uses bound constraints to avoid negative Q values, damping regularization is not needed, hence the ranges of Qp and Qs values obtained are less affected by human subjectivity. The subducting Pacific and Philippine Sea slabs exhibit high-Q and high Qp/Qs, whereas the mantle wedge beneath the volcanic front and back-arc area shows low-Q and low Qp/Qs. Both Qp and Qs vary in a range of 10-2000, and the Qp/Qs ratio changes from 0.4 to 1.4. Our results reveal a narrow high-Qp/Qs belt that is coincident with the distribution of volcanic and non-volcanic low-frequency micro-earthquakes (M 0.0-2.5), which may reflect high watersaturation anomalies that are probably associated with slab-derived fluids and responsible for the generation of low-frequency micro-earthquakes.
Original language | English |
---|---|
Pages (from-to) | 1679-1697 |
Number of pages | 19 |
Journal | Geophysical Journal International |
Volume | 219 |
Issue number | 3 |
DOIs | |
Publication status | Published - 2019 Aug 30 |
Keywords
- Inverse theory
- Seismic attenuation
- Seismic tomography
- Subduction zone processes
ASJC Scopus subject areas
- Geophysics
- Geochemistry and Petrology