Unifying the relationships of species richness to productivity and disturbance

Research output: Contribution to journalArticlepeer-review

227 Citations (Scopus)


Although species richness has been hypothesized to be highest at "intermediate" levels of disturbance, empirical studies have demonstrated that the disturbance-diversity relationship can be either negative or positive depending on productivity. On the other hand, hypothesized productivity-diversity relationships can be positive, negative or unimodal, as confirmed by empirical studies. However, it has remained unclear under what conditions each pattern is realized, and there is little agreement about the mechanisms that generate these diverse patterns. In this study, I present a model that synthesizes these separately developed hypotheses and shows that the interactive effects of disturbance and productivity on the competitive outcome of multispecies dynamics can result in these diverse relationships of species richness to disturbance and productivity. The predicted productivity-diversity relationship is unimodal but the productivity level that maximizes species richness increases with increasing disturbance. Similarly, the predicted disturbance-diversity relationship is unimodal but the peak moves to higher disturbance levels with increasing productivity. Further, these patterns are well explained by the opposite effects of productivity and disturbance on competitive outcome that are suggested by the change in community composition along these two environmental gradients: Higher productivity favours superior competitors while higher disturbance levels favour inferior competitors.

Original languageEnglish
Pages (from-to)269-271
Number of pages3
JournalProceedings of the Royal Society B: Biological Sciences
Issue number1464
Publication statusPublished - 2001 Feb 7
Externally publishedYes


  • Biodiversity
  • Disturbance-diversity relationship
  • Intermediate-disturbance hypothesis
  • Productivity-diversity relationship
  • Species richness

ASJC Scopus subject areas

  • Biochemistry, Genetics and Molecular Biology(all)
  • Immunology and Microbiology(all)
  • Environmental Science(all)
  • Agricultural and Biological Sciences(all)


Dive into the research topics of 'Unifying the relationships of species richness to productivity and disturbance'. Together they form a unique fingerprint.

Cite this