Abstract
At ultrafast timescales, the initial and final states of a first-order metal-insulator transition often coexist forming clusters of the two phases. Here, we report an unexpected third long-lived intermediate state emerging at the photoinduced first-order metal-insulator transition of La0.325Pr0.3Ca0.375MnO3, known to display submicrometer length-scale phase separation. Using magnetic force microscopy and time-dependent magneto-optical Kerr effect, we determined that the third state is a nanoscale mixture of the competing ferromagnetic metallic and charge-ordered insulating phases, with its own physical properties. This discovery bridges the two different families of colossal magnetoresistant manganites known experimentally and shows for the first time that the associated states predicted by theory can coexist in a single sample.
Original language | English |
---|---|
Article number | 267202 |
Journal | Physical review letters |
Volume | 120 |
Issue number | 26 |
DOIs | |
Publication status | Published - 2018 Jun 28 |
Externally published | Yes |
ASJC Scopus subject areas
- Physics and Astronomy(all)
Access to Document
Other files and links
Fingerprint
Dive into the research topics of 'Unexpected Intermediate State Photoinduced in the Metal-Insulator Transition of Submicrometer Phase-Separated Manganites'. Together they form a unique fingerprint.Cite this
- APA
- Standard
- Harvard
- Vancouver
- Author
- BIBTEX
- RIS
Unexpected Intermediate State Photoinduced in the Metal-Insulator Transition of Submicrometer Phase-Separated Manganites. / Lin, Hanxuan; Liu, Hao; Lin, Lingfang et al.
In: Physical review letters, Vol. 120, No. 26, 267202, 28.06.2018.Research output: Contribution to journal › Article › peer-review
}
TY - JOUR
T1 - Unexpected Intermediate State Photoinduced in the Metal-Insulator Transition of Submicrometer Phase-Separated Manganites
AU - Lin, Hanxuan
AU - Liu, Hao
AU - Lin, Lingfang
AU - Dong, Shuai
AU - Chen, Hongyan
AU - Bai, Yu
AU - Miao, Tian
AU - Yu, Yang
AU - Yu, Weichao
AU - Tang, Jing
AU - Zhu, Yinyan
AU - Kou, Yunfang
AU - Niu, Jiebin
AU - Cheng, Zhaohua
AU - Xiao, Jiang
AU - Wang, Wenbin
AU - Dagotto, Elbio
AU - Yin, Lifeng
AU - Shen, Jian
N1 - Funding Information: This mixing of nanoscopic structures cannot be considered as a mere special case of the well-known submicrometer phase separated FMM-COI state of LPCMO, otherwise there should not be a third independent peak in the histogram after photoexcitation [Fig. 3(b) ]. Its coexistence with the submicron FMM and COI phases leads to a phenomenon not reported before to our knowledge: photoexcitation generates two dramatically different electronic phase separation length scales (nanometer and submicrometer). Regarding the origin of the third state, since it is not observed upon static heating, we believe this stable intermediate state is induced by photoexcitation, but it could be possible that a transient nanoscale mixing state can be created by static heating which can not be captured by slow MFM measurements. We also believe its formation could be related to the superfast temperature change induced by the intense pulsed laser (up to 4.00 MW cm - 2 per pulse), which may result in electronic phase separation with a much smaller length scale. These nanoscopic domains will freeze after the temperature rapidly drops back, forming the observed intermediate state, which is verified by a numerical simulation based on the random-field Ising model [50–52] . Nanoscale mixture of the FMM and COI phases does form in the simulation giving results similar to experiments (see Sec. V and Fig. S5 [35] ). The scientific significance of the third state lies in the theoretical predictions [53] that unified in a single framework the phenomenological behavior of the two different families of CMR manganites observed experimentally. Those early predictions were based on transport data for ( Nd 1 - y Sm y ) 1 / 2 Sr 1 / 2 MnO 3 [54] that displays two different CMR’s varying temperature. The submicron length-scale phase separation of LPCMO fits into the so-called “CMR1” (or low-temperature CMR) behavior discussed in [53] [Figs. 5(a) and 5(b) ], while interpenetrating nanometer length-scale FMM and COI domains is compatible with the “CMR2” (or high-temperature CMR) behavior [53] [Figs. 5(a) and 5(c) ], typical of canonical CMR manganites such as La 1 - x Ca x MnO 3 (LCMO). The primary merit of our observation is that for the first time the states related with both types of CMR’s are displayed in real-space “snapshots” for the same sample, thus unifying these two families of manganites. Our results lead to the intriguing conclusion that the CMR2 state with nanometer-scale phase coexistence of LCMO is located only at slightly higher energy than the thermodynamically stable states of LPCMO, and it can be induced by light applied to LPCMO that in equilibrium only is characterized by CMR1 behavior. 5 10.1103/PhysRevLett.120.267202.f5 FIG. 5. (a) Theoretically predicted generic phase diagram when FMM and COI states compete [53] . The expected micrometer-scale CMR1 and nanometer-scale CMR2 phenomena, see text, are shown. g represents a generic variable needed to transfer the system from one phase to the other [53] , such as the tolerance factor. (b) Magnetic field H evolution of ρ vs temperature for CMR1, from the COI to the FMM, involving an abrupt first-order transition and concomitant micrometer-scale phase separation. (c) Same as (b) but for CMR2, involving a percolative process and nanometer-scale phase separation. Note that our observation is not limited to manganites. A long-lived metastable state involving ordered polarons has been reported before in a layered dichalcogenide 1 T - TaS 2 [55] , which shares qualitative similarities with our work. In particular, in the field of manganites, states that compete with the FMM state are often described as made of correlated polarons, imagined as a periodic distribution of polarons forming patterns rather than a random gas of polarons [56] . And the physics of CMR is also not limited just to manganites, but similar ideas are applicable to several transition metal oxides and other compounds, such as Ru, Cu, and Co oxides, with inhomogeneous dominant states [57] , particularly when several degrees of freedom are simultaneously active. In summary, we have visualized a previously unidentified intermediate state in LPCMO manganites during the photoinduced MIT. Once generated, the intermediate state is long lived and distinctly different from previously reported photoinduced transient states at ultrafast timescales. We believe this intermediate state is a mixture of FMM and COI nanoscale domains. Although more detailed understanding about the intermediate state should be gathered in future experiments, the observation of the photoinduced intermediate state not only bridges the two types of CMR transitions in manganites, but also illustrates a way to create two completely different characteristic lengths of phase separation in first order metal-insulator transitions, which may be applicable to first-order metal-insulator transitions in other condensed matter systems as well. This work was supported by the National Key Research Program of China (2016YFA0300702), National Basic Research Program of China (973 Program) under Grants No. 2014CB921104, National Natural Science Foundation of China (11504053, 11674055, 11474065), and the Shanghai Municipal Natural Science Foundation (18JC1411400, 18ZR1403200). E. D. was supported the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division. [1] 1 S. Jin , T. H. Tiefel , M. Mccormack , R. A. Fastnacht , R. Ramesh , and L. Chen , Science 264 , 413 ( 1994 ). SCIEAS 0036-8075 10.1126/science.264.5157.413 [2] 2 M. M. Qazilbash , M. Brehm , B. Chae , P. C. Ho , G. O. Andreev , B. Kim , S. J. Yun , A. V. Balatsky , M. B. Maple , Fritz Keilmann , Hyuntak Kim , and D. N. Basov , Science 318 , 1750 ( 2007 ). SCIEAS 0036-8075 10.1126/science.1150124 [3] 3 B. Radisavljevic and A. Kis , Nat. Mater. 12 , 815 ( 2013 ). NMAACR 1476-1122 10.1038/nmat3687 [4] 4 L. Nagarajan , R. A. De Souza , D. Samuelis , I. Valov , A. Borger , J. Janek , K. D. Becker , P. C. Schmidt , and M. Martin , Nat. Mater. 7 , 391 ( 2008 ). NMAACR 1476-1122 10.1038/nmat2164 [5] 5 J. Tao , D. Niebieskikwiat , M. Varela , W. Luo , M. A. Schofield , Y. Zhu , M. B. Salamon , J. M. Zuo , S. T. Pantelides , and S. J. Pennycook , Phys. Rev. Lett. 103 , 097202 ( 2009 ). PRLTAO 0031-9007 10.1103/PhysRevLett.103.097202 [6] 6 A. S. McLeod , E. van Heumen , J. G. Ramirez , S. Wang , T. Saerbeck , S. Guenon , M. Goldflam , L. Anderegg , P. Kelly , A. Mueller , M. K. Liu , I. K. Schuller , and D. N. Basov , Nat. Phys. 13 , 80 ( 2017 ). NPAHAX 1745-2473 10.1038/nphys3882 [7] 7 S. Kumar , J. P. Strachan , M. D. Pickett , A. M. Bratkovsky , Y. Nishi , and R. Stanley Williams , Adv. Mater. 26 , 7505 ( 2014 ). ADVMEW 0935-9648 10.1002/adma.201402404 [8] 8 J. Laverock , S. Kittiwatanakul , A. A. Zakharov , Y. R. Niu , B. Chen , S. A. Wolf , J. W. Lu , and K. E. Smith , Phys. Rev. Lett. 113 , 216402 ( 2014 ). PRLTAO 0031-9007 10.1103/PhysRevLett.113.216402 [9] 9 M. Imada , A. Fujimori , and Y. Tokura , Rev. Mod. Phys. 70 , 1039 ( 1998 ). RMPHAT 0034-6861 10.1103/RevModPhys.70.1039 [10] 10 A. Asamitsu , Y. Tomioka , H. Kuwahara , and Y. Tokura , Nature (London) 388 , 50 ( 1997 ). NATUAS 0028-0836 10.1038/40363 [11] 11 D. B. McWhan and J. P. Remeika , Phys. Rev. B 2 , 3734 ( 1970 ). PLRBAQ 0556-2805 10.1103/PhysRevB.2.3734 [12] 12 D. Fausti , R. Tobey , N. Dean , S. Kaiser , A. Dienst , M. Hoffmann , S. Pyon , T. Takayama , H. Takagi , and A. Cavalleri , Science 331 , 189 ( 2011 ). SCIEAS 0036-8075 10.1126/science.1197294 [13] 13 K. Kim , A. Pashkin , H. Schafer , M. Beyer , M. Porer , T. Wolf , C. Bernhard , J. Demsar , R. Huber , and A. Leitenstorfer , Nat. Mater. 11 , 497 ( 2012 ). NMAACR 1476-1122 10.1038/nmat3294 [14] 14 D. Y. Lei , K. Appavoo , F. Ligmajer , Y. Sonnefraud , R. F. Haglund , and S. A. Maier , ACS Photonics 2 , 1306 ( 2015 ). APCHD5 2330-4022 10.1021/acsphotonics.5b00249 [15] 15 V. Kiryukhin , D. Casa , J. P. Hill , B. Keimer , A. Vigliante , Y. Tomioka , and Y. Tokura , Nature (London) 386 , 813 ( 1997 ). NATUAS 0028-0836 10.1038/386813a0 [16] 16 K. Miyano , T. Tanaka , Y. Tomioka , and Y. Tokura , Phys. Rev. Lett. 78 , 4257 ( 1997 ). PRLTAO 0031-9007 10.1103/PhysRevLett.78.4257 [17] 17 N. Takubo , Y. Ogimoto , M. Nakamura , H. Tamaru , M. Izumi , and K. Miyano , Phys. Rev. Lett. 95 , 017404 ( 2005 ). PRLTAO 0031-9007 10.1103/PhysRevLett.95.017404 [18] 18 Y. Okimoto , Y. Ogimoto , M. Matsubara , Y. Tomioka , T. Kageyama , T. Hasegawa , H. Koinuma , M. Kawasaki , and Y. Tokura , Appl. Phys. Lett. 80 , 1031 ( 2002 ). APPLAB 0003-6951 10.1063/1.1448854 [19] 19 M. Fiebig , K. Miyano , Y. Tomioka , and Y. Tokura , Science 280 , 1925 ( 1998 ). SCIEAS 0036-8075 10.1126/science.280.5371.1925 [20] 20 I. I. Smolyaninov , V. N. Smolyaninova , C. C. Davis , B. G. Kim , S. W. Cheong , and R. L. Greene , Phys. Rev. Lett. 87 , 127204 ( 2001 ). PRLTAO 0031-9007 10.1103/PhysRevLett.87.127204 [21] 21 J. Zhang , X. Tan , M. Liu , S. W. Teitelbaum , K. W. Post , F. Jin , K. A. Nelson , D. N. Basov , W. Wu , and R. D. Averitt , Nat. Mater. 15 , 956 ( 2016 ). NMAACR 1476-1122 10.1038/nmat4695 [22] 22 P. Beaud , A. Caviezel , S. O. Mariager , L. Rettig , G. Ingold , C. Dornes , S. W. Huang , J. A. Johnson , M. Radovic , T. Huber , T. Kubacka , A. Ferrer , H. T. Lemke , M. Chollet , D. Zhu , J. M. Glownia , M. Sikorski , A. Robert , H. Wadati , M. Nakamura , Nat. Mater. 13 , 923 ( 2014 ). NMAACR 1476-1122 10.1038/nmat4046 [23] 23 T. Li , A. Patz , L. Mouchliadis , J. Yan , T. A. Lograsso , I. E. Perakis , and J. Wang , Nature (London) 496 , 69 ( 2013 ). NATUAS 0028-0836 10.1038/nature11934 [24] 24 D. Polli , M. Rini , S. Wall , R. W. Schoenlein , Y. Tomioka , Y. Tokura , G. Cerullo , and A. Cavalleri , Nat. Mater. 6 , 643 ( 2007 ). NMAACR 1476-1122 10.1038/nmat1979 [25] 25 J. X. Ma , D. T. Gillaspie , E. W. Plummer , and J. Shen , Phys. Rev. Lett. 95 , 237210 ( 2005 ). PRLTAO 0031-9007 10.1103/PhysRevLett.95.237210 [26] 26 H. Ichikawa , S. Nozawa , T. Sato , A. Tomita , K. Ichiyanagi , M. Chollet , L. Guerin , N. Dean , A. Cavalleri , S. Adachi , T. Arima , H. Sawa , Y. Ogimoto , M. Nakamura , R. Tamaki , K. Miyano , and S. Koshihara , Nat. Mater. 10 , 101 ( 2011 ). NMAACR 1476-1122 10.1038/nmat2929 [27] 27 V. R. Morrison , R. P. Chatelain , K. L. Tiwari , A. Hendaoui , A. Bruhacs , M. Chaker , and B. J. Siwick , Science 346 , 445 ( 2014 ). SCIEAS 0036-8075 10.1126/science.1253779 [28] 28 D. N. Basov , R. D. Averitt , D. van der Marel , M. Dressel , and K. Haule , Rev. Mod. Phys. 83 , 471 ( 2011 ). RMPHAT 0034-6861 10.1103/RevModPhys.83.471 [29] 29 M. Uehara , S. Mori , C. H. Chen , and S. W. Cheong , Nature (London) 399 , 560 ( 1999 ). NATUAS 0028-0836 10.1038/21142 [30] 30 K. H. Ahn , T. Lookman , and A. R. Bishop , Nature (London) 428 , 401 ( 2004 ). NATUAS 0028-0836 10.1038/nature02364 [31] 31 C. Milward , M. J. Calderón , and P. B. Littlewood , Nature (London) 433 , 607 ( 2005 ). NATUAS 0028-0836 10.1038/nature03300 [32] 32 L. Zhang , C. Israel , A. Biswas , R. L. Greene , and A. L. de Lozanne , Science 298 , 805 ( 2002 ). SCIEAS 0036-8075 10.1126/science.1077346 [33] 33 W. Wu , C. Israel , N. Hur , S. Park , S. W. Cheong , and A. D. Lozanne , Nat. Mater. 5 , 881 ( 2006 ). NMAACR 1476-1122 10.1038/nmat1743 [34] 34 Du , K. Zhang , S. Dong , W. Wei , J. Shao , J. Niu , J. Chen , Y. Zhu , H. Lin , X.Yin , S. H. Liou , L. Yin , and J. Shen , Nat. Commun. 6 , 6179 ( 2015 ). NCAOBW 2041-1723 10.1038/ncomms7179 [35] 35 See Supplemental Material at http://link.aps.org/supplemental/10.1103/PhysRevLett.120.267202 , which includes Refs. [36–41], for extra transport data, MFM images, numerical simulation and experimental methods. [36] 36 L. Néel , Ann. Geophys. (C.N.R.S.) 5 , 99 ( 1949 ). AGEPA7 0003-4029 [37] 37 B. D. Cullity , Introduction to Magnetic Materials ( Addison-Wesley Pub. Co. , New York, 1972 ). [38] 38 H. Liu , L. Lin , Y. Yu , H. Lin , Y. Zhu , T. Miao , Y. Bai , Q. Shi , P. Cai , Y. Kou , F. Lan , W. Wang , X. Zhou , S. Dong , L. Yin , and J. Shen , Phys. Rev. B 96 , 195154 ( 2017 ). PRBMDO 2469-9950 10.1103/PhysRevB.96.195154 [39] 39 D. Rugar , H. J. Mamin , P. H. Guethner , S. E. Lambert , J. E. Stern , I. R. Mcfadyen , and T. Yogi , J. Appl. Phys. 68 , 1169 ( 1990 ). JAPIAU 0021-8979 10.1063/1.346713 [40] 40 T. E. Schäffer , M. Radmacher , and R. Proksch , J. Appl. Phys. 94 , 6525 ( 2003 ). JAPIAU 0021-8979 10.1063/1.1623926 [41] 41 H. Zhou , L. Wang , Y. Hou , Z. Huang , Q. Lu , and W. Wu , Nat. Commun. 6 , 8980 ( 2015 ). NCAOBW 2041-1723 10.1038/ncomms9980 [42] 42 N. Takubo , I. Onishi , K. Takubo , T. Mizokawa , and K. Miyano , Phys. Rev. Lett. 101 , 177403 ( 2008 ). PRLTAO 0031-9007 10.1103/PhysRevLett.101.177403 [43] The two curves were measured in two independent thermal cycles to reset the samples’ ρ to the same value before photoexcitation. [44] 44 See also Supplemental Material [35], Fig. S1, at http://link.aps.org/supplemental/10.1103/PhysRevLett.120.267202 for 105 and 190 K. [45] 45 LPCMO thin films with an in-plane easy axis, see K. Zhang , K. Du , H. Liu , X. Zhang , F. Lan , H. Lin , W. Wei , Y. Zhu , Y. Kou , J. Shao , J. Niu , W. Wang , R. Wu , L. Yin , E. W. Plummer , and J. Shen , Proc. Natl. Acad. Sci. U.S.A. 112 , 9558 ( 2015 ). PNASA6 0027-8424 10.1073/pnas.1512326112 [46] 46 C. P. Bean and J. D. Livingston , J. Appl. Phys. 30 , S120 ( 1959 ). JAPIAU 0021-8979 10.1063/1.2185850 [47] 47 J. Shen , R. Skomski , M. Klaua , H. Jenniches , S. S. Manoharan , and J. Kirschner , Phys. Rev. B 56 , 2340 ( 1997 ). PRBMDO 0163-1829 10.1103/PhysRevB.56.2340 [48] 48 J. Shen , J. P. Pierce , E. W. Plummer , and J. Kirschner , J. Phys.:Condens. Matter 15 , R1 ( 2003 ). 10.1088/0953-8984/15/2/201 [49] 49 Z. Q. Qiu and S. D. Bader , J. Magn. Magn. Mater. 200 , 664 ( 1999 ). JMMMDC 0304-8853 10.1016/S0304-8853(99)00311-X [50] 50 A. Moreo , M. Mayr , A. Feiguin , S. Yunoki , and E. Dagotto , Phys. Rev. Lett. 84 , 5568 ( 2000 ). PRLTAO 0031-9007 10.1103/PhysRevLett.84.5568 [51] 51 E. Dagotto , T. Hotta , and A. Moreo , Phys. Rep. 344 , 1 ( 2001 ). PRPLCM 0370-1573 10.1016/S0370-1573(00)00121-6 [52] 52 Y. Zhu , K. Du , J. Niu , L. Lin , W. Wei , H. Liu , H. Lin , K. Zhang , T. Yang , Y. Kou , J. Shao , X. Gao , X. Xu , X. Wu , S. Dong , L. Yin , and J. Shen , Nat. Commun. 7 , 11260 ( 2016 ). NCAOBW 2041-1723 10.1038/ncomms11260 [53] 53a E. Dagotto , New J. Phys. 7 , 67 ( 2005 ). NJOPFM 1367-2630 10.1088/1367-2630/7/1/067 53b See also H. Aliaga , D. Magnoux , A. Moreo , D. Poilblanc , S. Yunoki , and E. Dagotto , Phys. Rev. B 68 , 104405 ( 2003 ); PRBMDO 0163-1829 10.1103/PhysRevB.68.104405 53c J. Burgy , E. Dagotto , and M. Mayr , Phys. Rev. B 67 , 014410 ( 2003 ). PRBMDO 0163-1829 10.1103/PhysRevB.67.014410 [54] 54 Y. Tokura , H. Kuwahara , Y. Moritomo , Y. Tomioka , and A. Asamitsu , Phys. Rev. Lett. 76 , 3184 ( 1996 ). PRLTAO 0031-9007 10.1103/PhysRevLett.76.3184 [55] 55 L. Stojchevska , I. Vaskivskyi , T. Mertelj , P. Kusar , D. Svetin , S. Brazovskii , and D. Mihailovic , Science 344 , 177 ( 2014 ). SCIEAS 0036-8075 10.1126/science.1241591 [56] 56 C. S. Nelson , M. v. Zimmermann , Y. J. Kim , J. P. Hill , D. Gibbs , V. Kiryukhin , T. Y. Koo , S.-W. Cheong , D. Casa , B. Keimer , Y. Tomioka , Y. Tokura , T. Gog , and C. T. Venkataraman , Phys. Rev. B 64 , 174405 ( 2001 ). PRBMDO 0163-1829 10.1103/PhysRevB.64.174405 [57] 57 E. Dagotto , Science 309 , 257 ( 2005 ). SCIEAS 0036-8075 10.1126/science.1107559 Publisher Copyright: © 2018 American Physical Society.
PY - 2018/6/28
Y1 - 2018/6/28
N2 - At ultrafast timescales, the initial and final states of a first-order metal-insulator transition often coexist forming clusters of the two phases. Here, we report an unexpected third long-lived intermediate state emerging at the photoinduced first-order metal-insulator transition of La0.325Pr0.3Ca0.375MnO3, known to display submicrometer length-scale phase separation. Using magnetic force microscopy and time-dependent magneto-optical Kerr effect, we determined that the third state is a nanoscale mixture of the competing ferromagnetic metallic and charge-ordered insulating phases, with its own physical properties. This discovery bridges the two different families of colossal magnetoresistant manganites known experimentally and shows for the first time that the associated states predicted by theory can coexist in a single sample.
AB - At ultrafast timescales, the initial and final states of a first-order metal-insulator transition often coexist forming clusters of the two phases. Here, we report an unexpected third long-lived intermediate state emerging at the photoinduced first-order metal-insulator transition of La0.325Pr0.3Ca0.375MnO3, known to display submicrometer length-scale phase separation. Using magnetic force microscopy and time-dependent magneto-optical Kerr effect, we determined that the third state is a nanoscale mixture of the competing ferromagnetic metallic and charge-ordered insulating phases, with its own physical properties. This discovery bridges the two different families of colossal magnetoresistant manganites known experimentally and shows for the first time that the associated states predicted by theory can coexist in a single sample.
UR - http://www.scopus.com/inward/record.url?scp=85049369486&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85049369486&partnerID=8YFLogxK
U2 - 10.1103/PhysRevLett.120.267202
DO - 10.1103/PhysRevLett.120.267202
M3 - Article
C2 - 30004745
AN - SCOPUS:85049369486
VL - 120
JO - Physical Review Letters
JF - Physical Review Letters
SN - 0031-9007
IS - 26
M1 - 267202
ER -