Ultrathin film of 3D topological insulators by vapor-phase epitaxy: Surface dominant transport in wide temperature revealed by Seebeck measurement

Research output: Contribution to journalArticlepeer-review

Abstract

Realization of intrinsic surface dominant transport in a wide temperature region for a topological insulators (TIs) is an important frontier research in order to promote the progresses of TIs towards the future electronics. We report here systematic measurements of longitudinal electrical transport, Shubnikov-de-Haas (SdH) quantum oscillations, Hall coefficient (RH2D), and Seebeck coefficient as a function of film thickness (d) and temperature using high quality Bi2-xSbxTe3-ySey (BSTS) single crystal thin films grown by physical vapor-phase deposition. The thickness dependence of sheet conductance and Seebeck coefficient clearly show the suppression of semiconducting hole carriers of bulk states by reducing film thickness, reaching to the surface dominant transport at below dc=14 nm. Quantitative arguments are made as to how the contribution of itinerant carrier number (n) can be suppressed, using both RH2D (ηHall2D ) and SdH (ηSdH). Intriguingly, the value of ηHall2D approaches to be twice of ηSdH below dc. While RH2D shows a negative sign in whole temperature region, a change from negative to positive polarity is clearly observed for S at high temperatures when d is thick. We point out that this inconsistency observed between RH2D and S is intrinsic in 3D-TIs and its origin is the large difference in carrier mobility between the bulk and the topological surface. We propose that Seebeck coefficient can become a convenient and powerful tool to evaluate the intrinsic carrier concentration for the topological surface in 3D-TIs even in the absence of magnetic field.

Original languageEnglish
JournalUnknown Journal
Publication statusPublished - 2018 Dec 20

ASJC Scopus subject areas

  • General

Fingerprint Dive into the research topics of 'Ultrathin film of 3D topological insulators by vapor-phase epitaxy: Surface dominant transport in wide temperature revealed by Seebeck measurement'. Together they form a unique fingerprint.

Cite this