Abstract
An ultra-fast optoelectronic decision circuit using resonant tunneling diodes (RTD's) and a uni-traveling-carrier photodiode (UTC-PD) is proposed. The circuit employs two cascaded RTD's for ultra-fast logic operation and one UTC-PD that offers a direct optical input interface. This novel configuration is suitable for ultra-fast decision operation. Two types of decision circuits are introduced: A positive-logic type and a negative-logic type. Operations of these circuits were simulated using SPICE with precisely investigated RTD and UTC-PD models. In terms of circuit speed, 40-Gbit/s decision and 80-Gbit/s demultiplexing were expected. Furthermore, the superiority of the negative-logic type in terms of the circuit operating margin and the relationship between input peak photocurrent and effective logic swing were clarified by SPICE simulations. In order to confirm the basic functions of the circuits and the accuracy of the simulations, circuits were fabricated by monolithically integrating InP-based RTD's and UTC-PD's. The circuits successfully exhibited 40-Gbit/s decision operation and 80-Gbit/s demultiplexing operation with less than 10-mW power dissipation. The superiority of the negative-logic type circuit for the circuit operation was confirmed, and the relationship between the input peak photocurrent and the effective logic swing was as predicted.
Original language | English |
---|---|
Pages (from-to) | 1638-1645 |
Number of pages | 8 |
Journal | IEICE Transactions on Electronics |
Volume | E82-C |
Issue number | 9 |
Publication status | Published - 1999 |
Externally published | Yes |
Keywords
- Decision circuit
- Lightwave communications
- Optoelectronic IC (OEIC)
- Resonant tunneling diode
- SPICE
- Uni-traveling-carrier photodiode
ASJC Scopus subject areas
- Electronic, Optical and Magnetic Materials
- Electrical and Electronic Engineering