Two training strategies for improving relation extraction over universal graph

Qin Dai, Naoya Inoue, Ryo Takahashi, Kentaro Inui

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

This paper explores how the Distantly Supervised Relation Extraction (DS-RE) can benefit from the use of a Universal Graph (UG), the combination of a Knowledge Graph (KG) and a large-scale text collection. A straightforward extension of a current state-of-the-art neural model for DS-RE with a UG may lead to degradation in performance. We first report that this degradation is associated with the difficulty in learning a UG and then propose two training strategies: (1) Path Type Adaptive Pretraining, which sequentially trains the model with different types of UG paths so as to prevent the reliance on a single type of UG path; and (2) Complexity Ranking Guided Attention mechanism, which restricts the attention span according to the complexity of a UG path so as to force the model to extract features not only from simple UG paths but also from complex ones. Experimental results on both biomedical and NYT10 datasets prove the robustness of our methods and achieve a new state-ofthe-art result on the NYT10 dataset. The code and datasets used in this paper are available at https://github.com/baodaiqin/ UGDSRE.

Original languageEnglish
Title of host publicationEACL 2021 - 16th Conference of the European Chapter of the Association for Computational Linguistics, Proceedings of the Conference
PublisherAssociation for Computational Linguistics (ACL)
Pages3673-3684
Number of pages12
ISBN (Electronic)9781954085022
Publication statusPublished - 2021
Event16th Conference of the European Chapter of the Associationfor Computational Linguistics, EACL 2021 - Virtual, Online
Duration: 2021 Apr 192021 Apr 23

Publication series

NameEACL 2021 - 16th Conference of the European Chapter of the Association for Computational Linguistics, Proceedings of the Conference

Conference

Conference16th Conference of the European Chapter of the Associationfor Computational Linguistics, EACL 2021
CityVirtual, Online
Period21/4/1921/4/23

ASJC Scopus subject areas

  • Software
  • Computational Theory and Mathematics
  • Linguistics and Language

Fingerprint

Dive into the research topics of 'Two training strategies for improving relation extraction over universal graph'. Together they form a unique fingerprint.

Cite this