Two Reaction Mechanisms via Iminium Ion Intermediates: The Different Reactivities of Diphenylprolinol Silyl Ether and Trifluoromethyl-Substituted Diarylprolinol Silyl Ether

Hiroaki Gotoh, Tadafumi Uchimaru, Yujiro Hayashi

Research output: Contribution to journalArticlepeer-review

24 Citations (Scopus)

Abstract

The reactions of α,β-unsaturated aldehydes with cyclopentadiene in the presence of diarylprolinol silyl ethers as catalyst proceed via iminium cations as intermediates, and can be divided into two types; one involving a Michael-type reaction (type A) and one involving a cycloaddition (type B). Diphenylprolinol silyl ethers and trifluoromethyl-substituted diarylprolinol silyl ethers, which are widely used proline-type organocatalysts, have been investigated in this study. As the LUMO of the iminium ion derived from trifluoromethyl-substituted diarylprolinol silyl ether is lower in energy than that derived from diphenylprolinol silyl ether, as supported by ab initio calculations, the trifluoromethyl-substituted catalyst is more reactive in a type B reaction. The iminium ion from an α,β-unsaturated aldehyde is generated more quickly with diphenylprolinol silyl ether than with the trifluoromethyl-substituted diarylprolinol silyl ether. When the generation of the iminium ion is the rate-determining step, the diphenylprolinol silyl ether catalyst is the more reactive. Because acid accelerates the generation of iminium ions and reduces the generation of anionic nucleophiles in the Michael-type reaction (type A), it is necessary to select the appropriate acid for specific reactions. In general, diphenylprolinol silyl ether is a superior catalyst for type A reactions, whereas the trifluoromethyl-substituted diarylprolinol silyl ether catalyst is preferred for type B reactions.

Original languageEnglish
Pages (from-to)12337-12346
Number of pages10
JournalChemistry - A European Journal
Volume21
Issue number35
DOIs
Publication statusPublished - 2015 Aug 1

Keywords

  • asymmetric synthesis
  • iminium ions
  • organocatalysis
  • reaction mechanisms
  • silyl ethers

ASJC Scopus subject areas

  • Catalysis
  • Organic Chemistry

Fingerprint Dive into the research topics of 'Two Reaction Mechanisms via Iminium Ion Intermediates: The Different Reactivities of Diphenylprolinol Silyl Ether and Trifluoromethyl-Substituted Diarylprolinol Silyl Ether'. Together they form a unique fingerprint.

Cite this