TY - JOUR
T1 - Two different rickettsial bacteria invading Volvox carteri
AU - Kawafune, Kaoru
AU - Hongoh, Yuichi
AU - Hamaji, Takashi
AU - Sakamoto, Tomoaki
AU - Kurata, Tetsuya
AU - Hirooka, Shunsuke
AU - Miyagishima, Shin Ya
AU - Nozaki, Hisayoshi
N1 - Publisher Copyright:
© 2015 Kawafune et al.
Copyright:
Copyright 2015 Elsevier B.V., All rights reserved.
PY - 2015/2/11
Y1 - 2015/2/11
N2 - Background: Bacteria of the family Rickettsiaceae are principally associated with arthropods. Recently, endosymbionts of the Rickettsiaceae have been found in non-phagotrophic cells of the volvocalean green algae Carteria cerasiformis, Pleodorina japonica, and Volvox carteri. Such endosymbionts were present in only C. cerasiformis strain NIES-425 and V. carteri strain UTEX 2180, of various strains of Carteria and V. carteri examined, suggesting that rickettsial endosymbionts may have been transmitted to only a few algal strains very recently. However, in preliminary work, we detected a sequence similar to that of a rickettsial gene in the nuclear genome of V. carteri strain EVE. Methodology/Principal Findings: Here we explored the origin of the rickettsial gene-like sequences in the endosymbiont-lacking V. carteri strain EVE, by performing comparative analyses on 13 strains of V. carteri. By reference to our ongoing genomic sequence of rickettsial endosymbionts in C. cerasiformis strain NIES-425 cells, we confirmed that an approximately 9-kbp DNA sequence encompassing a region similar to that of four rickettsial genes was present in the nuclear genome of V. carteri strain EVE. Phylogenetic analyses, and comparisons of the synteny of rickettsial gene-like sequences from various strains of V. carteri, indicated that the rickettsial genelike sequences in the nuclear genome of V. carteri strain EVE were closely related to rickettsial gene sequences of P. japonica, rather than those of V. carteri strain UTEX 2180. Conclusion/Significance: At least two different rickettsial organisms may have invaded the V. carteri lineage, one of which may be the direct ancestor of the endosymbiont of V. carteri strain UTEX 2180, whereas the other may be closely related to the endosymbiont of P. japonica. Endosymbiotic gene transfer from the latter rickettsial organism may have occurred in an ancestor of V. carteri. Thus, the rickettsiae may be widely associated with V. carteri, and likely have often been lost during host evolution.
AB - Background: Bacteria of the family Rickettsiaceae are principally associated with arthropods. Recently, endosymbionts of the Rickettsiaceae have been found in non-phagotrophic cells of the volvocalean green algae Carteria cerasiformis, Pleodorina japonica, and Volvox carteri. Such endosymbionts were present in only C. cerasiformis strain NIES-425 and V. carteri strain UTEX 2180, of various strains of Carteria and V. carteri examined, suggesting that rickettsial endosymbionts may have been transmitted to only a few algal strains very recently. However, in preliminary work, we detected a sequence similar to that of a rickettsial gene in the nuclear genome of V. carteri strain EVE. Methodology/Principal Findings: Here we explored the origin of the rickettsial gene-like sequences in the endosymbiont-lacking V. carteri strain EVE, by performing comparative analyses on 13 strains of V. carteri. By reference to our ongoing genomic sequence of rickettsial endosymbionts in C. cerasiformis strain NIES-425 cells, we confirmed that an approximately 9-kbp DNA sequence encompassing a region similar to that of four rickettsial genes was present in the nuclear genome of V. carteri strain EVE. Phylogenetic analyses, and comparisons of the synteny of rickettsial gene-like sequences from various strains of V. carteri, indicated that the rickettsial genelike sequences in the nuclear genome of V. carteri strain EVE were closely related to rickettsial gene sequences of P. japonica, rather than those of V. carteri strain UTEX 2180. Conclusion/Significance: At least two different rickettsial organisms may have invaded the V. carteri lineage, one of which may be the direct ancestor of the endosymbiont of V. carteri strain UTEX 2180, whereas the other may be closely related to the endosymbiont of P. japonica. Endosymbiotic gene transfer from the latter rickettsial organism may have occurred in an ancestor of V. carteri. Thus, the rickettsiae may be widely associated with V. carteri, and likely have often been lost during host evolution.
UR - http://www.scopus.com/inward/record.url?scp=84922998599&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84922998599&partnerID=8YFLogxK
U2 - 10.1371/journal.pone.0116192
DO - 10.1371/journal.pone.0116192
M3 - Article
C2 - 25671568
AN - SCOPUS:84922998599
VL - 10
JO - PLoS One
JF - PLoS One
SN - 1932-6203
IS - 2
M1 - e116192
ER -