Tunable spin wave spectra in two-dimensional Ni80Fe20 antidot lattices with varying lattice symmetry

R. Mandal, S. Barman, S. Saha, Y. Otani, A. Barman

Research output: Contribution to journalArticlepeer-review

20 Citations (Scopus)


Ferromagnetic antidot lattices are important systems for magnetic data storage and magnonic devices, and understanding their magnetization dynamics by varying their structural parameters is an important problems in magnetism. Here, we investigate the variation in spin wave spectrum in two-dimensional nanoscale Ni80Fe20 antidot lattices with lattice symmetry. By varying the bias magnetic field values in a broadband ferromagnetic resonance spectrometer, we observed a stark variation in the spin wave spectrum with the variation of lattice symmetry. The simulated mode profiles showed further difference in the spatial nature of the modes between different lattices. While for square and rectangular lattices extended modes are observed in addition to standing spin wave modes, all modes in the hexagonal, honeycomb, and octagonal lattices are either localized or standing waves. In addition, the honeycomb and octagonal lattices showed two different types of modes confined within the honeycomb (octagonal) units and between two such consecutive units. Simulated internal magnetic fields confirm the origin of such a wide variation in the frequency and spatial nature of the spin wave modes. The tunability of spin waves with the variation of lattice symmetry is important for the design of future magnetic data storage and magnonic devices.

Original languageEnglish
Article number053910
JournalJournal of Applied Physics
Issue number5
Publication statusPublished - 2015 Aug 7
Externally publishedYes

ASJC Scopus subject areas

  • Physics and Astronomy(all)

Fingerprint Dive into the research topics of 'Tunable spin wave spectra in two-dimensional Ni<sub>80</sub>Fe<sub>20</sub> antidot lattices with varying lattice symmetry'. Together they form a unique fingerprint.

Cite this