Translocation of bio-functionalized magnetic beads using smart magnetophoresis

S. Anandakumar, V. Sudha Rani, Sunjong Oh, B. L. Sinha, Migaku Takahashi, Cheol Gi Kim

    Research output: Contribution to journalArticlepeer-review

    29 Citations (Scopus)

    Abstract

    We demonstrate real time on-chip translocation of bio-functionalized superparamagnetic beads on a silicon surface in a solution using a magnetophoresis technique. The superparamagnetic beads act as biomolecule carriers. Fluorescent-labeled Atto-520 biotin was loaded to streptavidin-coated magnetic beads (Dynabead® M-280) by means of ligand-receptor interactions. The magnetic pathways were patterned lithographically such that semi-elliptical Ni80Fe20 elements were arranged sequentially for a few hundred micrometers in length. An external rotating magnetic field was used to drive translational forces on the magnetic beads that were proportional to the product of the field strength and its gradient. The translational force at the curving edge of the pathway element of 6μm diameter was calculated to be ∼1.2pN for an applied field of 7.9kAm-1. However, the force at the flat edge was calculated to be ∼0.16pN. The translational force was larger than the drag force and thus allowed the magnetic beads to move in a directional way along the curving edge of the pathway. However, the force was not sufficient to move the beads along the flat edge. The top and bottom curving edge semi-elliptical NiFe pathways were obliquely-arranged on the left and right sides of the converging site, respectively. This caused a central translational force that allowed the converging and diverging of the Atto-520 biotin loaded streptavidin magnetic beads at a particular site.

    Original languageEnglish
    Pages (from-to)1755-1758
    Number of pages4
    JournalBiosensors and Bioelectronics
    Volume26
    Issue number4
    DOIs
    Publication statusPublished - 2010 Dec 15

    Keywords

    • Biotin
    • Magnetic beads
    • Magnetophoresis
    • Semi-elliptical NiFe pathways
    • Streptavidin

    ASJC Scopus subject areas

    • Biotechnology
    • Biophysics
    • Biomedical Engineering
    • Electrochemistry

    Fingerprint

    Dive into the research topics of 'Translocation of bio-functionalized magnetic beads using smart magnetophoresis'. Together they form a unique fingerprint.

    Cite this