TY - JOUR
T1 - Transition of differential histone H3 methylation in photoreceptors and other retinal cells during retinal differentiation
AU - Ueno, Kazuko
AU - Iwagawa, Toshiro
AU - Kuribayashi, Hiroshi
AU - Baba, Yukihiro
AU - Nakauchi, Hiromitsu
AU - Murakami, Akira
AU - Nagasaki, Masao
AU - Suzuki, Yutaka
AU - Watanabe, Sumiko
PY - 2016/7/5
Y1 - 2016/7/5
N2 - To analyze cell lineage-specific transitions in global transcriptional and epigenetic changes during retinogenesis, we purified retinal cells from normal mice during postnatal development into two fractions, namely, photoreceptors and other retinal cells, based on Cd73 expression, and performed RNA sequencing and ChIP sequencing of H3K27me3 and H3K4me3. Genes expressed in the photoreceptor lineage were marked with H3K4me3 in the Cd73-positive cell fraction; however, the level of H3K27me3 was very low in both Cd73-positive and -negative populations. H3K27me3 may be involved in spatio-temporal onset of a subset of bipolar-related genes. Subsets of genes expressed in amacrine and retinal ganglion cells, which are early-born retinal cell types, were suggested to be maintained in a silent state by H3K27me3 during late-stage retinogenesis. In the outer nuclear layer, upregulation of Rho and rod-related genes were observed in Ezh2-ablated retina, suggesting a role for H3K27me3 in the maintenance of proper expression levels. Taken together, our data on the transition of lineage-specific molecular signatures during development suggest that histone methylation is involved in retinal differentiation and maintenance through cell lineage-specific mechanisms.
AB - To analyze cell lineage-specific transitions in global transcriptional and epigenetic changes during retinogenesis, we purified retinal cells from normal mice during postnatal development into two fractions, namely, photoreceptors and other retinal cells, based on Cd73 expression, and performed RNA sequencing and ChIP sequencing of H3K27me3 and H3K4me3. Genes expressed in the photoreceptor lineage were marked with H3K4me3 in the Cd73-positive cell fraction; however, the level of H3K27me3 was very low in both Cd73-positive and -negative populations. H3K27me3 may be involved in spatio-temporal onset of a subset of bipolar-related genes. Subsets of genes expressed in amacrine and retinal ganglion cells, which are early-born retinal cell types, were suggested to be maintained in a silent state by H3K27me3 during late-stage retinogenesis. In the outer nuclear layer, upregulation of Rho and rod-related genes were observed in Ezh2-ablated retina, suggesting a role for H3K27me3 in the maintenance of proper expression levels. Taken together, our data on the transition of lineage-specific molecular signatures during development suggest that histone methylation is involved in retinal differentiation and maintenance through cell lineage-specific mechanisms.
UR - http://www.scopus.com/inward/record.url?scp=84977262779&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84977262779&partnerID=8YFLogxK
U2 - 10.1038/srep29264
DO - 10.1038/srep29264
M3 - Article
C2 - 27377164
AN - SCOPUS:84977262779
VL - 6
JO - Scientific Reports
JF - Scientific Reports
SN - 2045-2322
M1 - 29264
ER -