Transition-Metal-Catalyzed Synthesis of Organophosphorus Compounds Involving P-P Bond Cleavage

Research output: Contribution to journalReview articlepeer-review

1 Citation (Scopus)

Abstract

Organophosphorus compounds are used as drugs, pesticides, detergents, food additives, flame retardants, synthetic reagents, and catalysts, and their efficient synthesis is an important task in organic synthesis. To synthesize novel functional organophosphorus compounds, transition-metal-catalyzed methods have been developed, which were previously considered difficult because of the strong bonding that occurs between transition metals and phosphorus. Addition reactions of triphenylphosphine and sulfonic acids to unsaturated compounds in the presence of a rhodium or palladium catalyst lead to phosphonium salts, in direct contrast to the conventional synthesis involving substitution reactions of organohalogen compounds. Rhodium and palladium complexes catalyze the cleavage of P-P bonds in diphosphines and polyphosphines and can transfer organophosphorus groups to various organic compounds. Subsequent substitution and addition reactions proceed effectively, without using a base, to provide various novel organophosphorus compounds. 1 Introduction 2 Transition-Metal-Catalyzed Synthesis of Phosphonium Salts by Addition Reactions of Triphenylphosphine and Sulfonic Acids 3 Rhodium-Catalyzed P-P Bond Cleavage and Exchange Reactions 4 Transition-Metal-Catalyzed Substitution Reactions Using Diphosphines 4.1 Reactions Involving Substitution of a Phosphorus Group by P-P Bond Cleavage 4.2 Related Substitution Reactions of Organophosphorus Compounds 4.3 Substitution Reactions of Acid Fluorides Involving P-P Bond Cleavage of Diphosphines 5 Rhodium-Catalyzed P-P Bond Cleavage and Addition Reactions 6 Rhodium-Catalyzed P-P Bond Cleavage and Insertion Reactions Using Polyphosphines 7 Conclusions.

Original languageEnglish
Pages (from-to)2795-2806
Number of pages12
JournalSynthesis (Germany)
Volume52
Issue number19
DOIs
Publication statusPublished - 2020 Oct 16

Keywords

  • P-P bond cleavage
  • addition reactions
  • diphosphines
  • exchange reactions
  • insertion reactions
  • organophosphorus compounds
  • polyphosphines
  • rhodium and palladium catalysts

ASJC Scopus subject areas

  • Catalysis
  • Organic Chemistry

Fingerprint Dive into the research topics of 'Transition-Metal-Catalyzed Synthesis of Organophosphorus Compounds Involving P-P Bond Cleavage'. Together they form a unique fingerprint.

Cite this