Abstract
The transition from the complex Rayleigh-Bénard convection to the simple heated-from-the-sides configuration in a cubical cavity filled with a Newtonian fluid is numerically studied. The cavity is tilted by an angle θ around its lower horizontal edge and is heated and cooled from two opposite tilted sides. We first analyze the effect of a marginal inclination angle on quasi-Rayleigh-Bénard convection (θ≈0), which is a realistic physical approximation to the ideal Rayleigh-Bénard convection. We then yield the critical angles where multiple solutions that were initially found for θ≈0 disappear, eventually resulting in the single steady roll solution found in the heated-from-the-sides configuration (θ=90). We confirm the existence of critical angles during the transition θ:0→90, and we demonstrate that such angles are a consequence of either singularities or collisions of bifurcation points in the Rayleigh-number-θ parameter space. We finally derive the most important critical angles corresponding to any Newtonian fluid of Prandtl number greater than that of air.
Original language | English |
---|---|
Article number | 023031 |
Journal | Physical Review E - Statistical, Nonlinear, and Soft Matter Physics |
Volume | 92 |
Issue number | 2 |
DOIs | |
Publication status | Published - 2015 Aug 28 |
ASJC Scopus subject areas
- Statistical and Nonlinear Physics
- Statistics and Probability
- Condensed Matter Physics