Transient behavior of burden descending and influence of cohesive zone shape on solid flow and stress distribution in blast furnace by discrete element method

Zhengyun Fan, Shungo Natsui, Shigeru Ueda, Tianjun Yang, Junya Kano, Ryo Inoue, Tatsuro Ariyama

Research output: Contribution to journalArticle

27 Citations (Scopus)

Abstract

The present investigation intends to elucidate the transient behavior of burden descending, the influence of cohesive zone shape on the solid flow and the stress field through three-dimensional analysis by discrete element method (DEM) in blast furnace. Although many continuum models were developed to analyze the in-furnace phenomena such as solid flow, DEM enables to analyze the unsteady state solid flow, the stress distribution and slip of burden in the three dimensional state. In this study, it was clarified that the solid flow in blast furnace was composed of steady flow and transient flow which caused by burden charge and slip around raceway. Burden charge instantaneously causes high stress region and high velocity region to spread from upper part to lower part. High velocity region caused by slip around raceway spreads upwards and mitigates the stress field in the vicinity of raceway. The cohesive zone shape almost does not affect on the particle movement in the upper part of shaft and deadman shape. However, the distribution of high stress region and high slipping region is affected by the cohesive zone shape. Asymmetric high stress and slipping distribution are formed in the case of biased cohesive zone, and high cohesive zone enlarges the region of high stress. Weak slipping region in the upper part of shaft tends to be mitigated by the stress field in upper part. Belly receives the maximum stress from burden. The normal stress acting on the bottom is concentrated on the center of bottom by the buoyancy effect of pig iron in the hearth.

Original languageEnglish
Pages (from-to)946-953
Number of pages8
JournalIsij International
Volume50
Issue number7
DOIs
Publication statusPublished - 2010 Sep 23

Keywords

  • Blast furnace
  • Cohesive zone
  • Discrete element method
  • Ironmaking
  • Slip
  • Solid flow
  • Stress

ASJC Scopus subject areas

  • Mechanics of Materials
  • Mechanical Engineering
  • Metals and Alloys
  • Materials Chemistry

Fingerprint Dive into the research topics of 'Transient behavior of burden descending and influence of cohesive zone shape on solid flow and stress distribution in blast furnace by discrete element method'. Together they form a unique fingerprint.

  • Cite this