Abstract
We recently established 2 mouse lines with different susceptibilities (prone and resistant) to high-fat diet (HFD)-induced glucose intolerance by selective breeding (designated selectively bred diet-induced glucose intolerance-prone [SDG-P] and -resistant [SDG-R], respectively). In the present study, we analyzed transgenerational changes in metabolic phenotypes in these 2 mouse colonies to explore how the distinct phenotypes have emerged through the repetitive selection. Using C57BL/6, C3H, and AKR as background strains, mice showing inferior and superior glucose tolerance after HFD feeding were selected and bred repetitively over 20 generations to produce SDG-P and SDG-R, respectively. In addition to the blood glucose levels, HFD intake and body weight were also measured over the selective breeding period. As the generations proceeded, SDG-P mice became more susceptible to HFD-induced glucose intolerance and body weight gain, whereas SDG-R mice had gradually reduced HFD intake. The differences in fasting and post-glucose challenge blood glucose levels, body weight, and HFD intake became more evident between the 2 colonies through the selective breeding, mainly due to the HFD-induced glucose metabolism impairment and body weight gain in SDG-P mice and the reduction of HFD intake in SDG-R mice. These transgenerational changes in the metabolic phenotypes suggest that the genetic loci associated with the quantitative traits have been selectively enriched in SDG-P and SDG-R.
Original language | English |
---|---|
Pages (from-to) | 371-378 |
Number of pages | 8 |
Journal | endocrine journal |
Volume | 62 |
Issue number | 4 |
DOIs |
|
Publication status | Published - 2015 |
Externally published | Yes |
Keywords
- Feeding behavior
- High-fat diet
- Selective breeding
- Type 2 diabetes
ASJC Scopus subject areas
- Endocrinology, Diabetes and Metabolism
- Endocrinology