Transducin activates cGMP phosphodiesterase by trapping inhibitory γ subunit freed reversibly from the catalytic subunit in solution

Teizo Asano, Satoru Kawamura, Shuji Tachibanaki

Research output: Contribution to journalArticlepeer-review

Abstract

Activation of cGMP phosphodiesterase (PDE) by activated transducin α subunit (Tα*) is a necessary step to generate a light response in vertebrate photoreceptors. PDE in rods is a heterotetramer composed of two catalytic subunits, PDEα and PDEβ, and two inhibitory PDEγ subunits, each binding to PDEα or PDEβ. Activation of PDE is achieved by relief of the inhibitory constraint of PDEγ on the catalytic subunit. In this activation mechanism, it is widely believed that Tα* binds to PDEγ still bound to the catalytic subunit, and removes or displaces PDEγ from the catalytic subunit. However, recent structural analysis showed that the binding of Tα* to PDEγ still bound to PDEα or PDEβ seems to be difficult because the binding site of PDEγ to PDEα or PDEβ overlaps with the binding site to Tα*. In the present study, we propose a novel activation mechanism of PDE, the trapping mechanism, in which Tα* activates PDE by trapping PDEγ released reversibly and spontaneously from the catalytic subunit. This mechanism well explains PDE activation by Tα* in solution. Our further analysis with this mechanism suggests that more effective PDE activation in disk membranes is highly dependent on the membrane environment.

Original languageEnglish
Article number7245
JournalScientific reports
Volume9
Issue number1
DOIs
Publication statusPublished - 2019 Dec 1
Externally publishedYes

ASJC Scopus subject areas

  • General

Fingerprint

Dive into the research topics of 'Transducin activates cGMP phosphodiesterase by trapping inhibitory γ subunit freed reversibly from the catalytic subunit in solution'. Together they form a unique fingerprint.

Cite this