Trace element partitioning between majoritic garnet and silicate melt at 10-17GPa: Implications for deep mantle processes

Alexandre Corgne, Lora S. Armstrong, Shantanu Keshav, Yingwei Fei, William F. McDonough, William G. Minarik, Karen Moreno

Research output: Contribution to journalArticlepeer-review

26 Citations (Scopus)

Abstract

Melting experiments were performed on a silica-rich peridotite composition at 10-17GPa to determine majoritic garnet-melt partition coefficients (D) for major and trace elements. Our results show that D for many elements, including Na, Sc, Y and rare earth elements (REE), varies significantly with increasing pressure or proportion of majorite component. Lu and Sc become incompatible at 17GPa, with D decreasing from 1.5 at 10GPa to 0.9 at 17GPa. As predicted from lattice strain, log D for isovalent cations entering the large site of majoritic garnet exhibits a near-parabolic dependence on ionic radius. Our data are used to refine a previously published predictive model for garnet-melt partitioning of trivalent cations, which suffered from a lack of calibration in the 10-20GPa range. Our results suggest that Archean Al-depleted komatiites from Barberton (South Africa) may have been generated by partial melting of dry peridotite at depths between 200 and 400km. We also speculate that transition zone diamonds from Kankan (Guinea), which contain inclusions of majoritic garnet, may have formed from the partial reduction of CO 2-rich magmas that subsequently transported them to the surface. This hypothesis would provide an explanation for the REE patterns of majoritic garnet trapped within these diamonds, including Eu anomalies. Finally, we show that segregation of majoritic garnet-bearing cumulates during crystallisation of a deep Martian magma ocean could lead to a variety of Lu/Hf and Sm/Nd ratios depending on pressure, leading to a range of ε 143Nd and ε 176Hf isotope signatures for potential mantle sources of Martian rocks.

Original languageEnglish
Pages (from-to)128-141
Number of pages14
JournalLithos
Volume148
DOIs
Publication statusPublished - 2012 Sep 1
Externally publishedYes

Keywords

  • Diamonds
  • Garnet
  • Komatiites
  • Majorite
  • Mars
  • Trace elements

ASJC Scopus subject areas

  • Geology
  • Geochemistry and Petrology

Fingerprint Dive into the research topics of 'Trace element partitioning between majoritic garnet and silicate melt at 10-17GPa: Implications for deep mantle processes'. Together they form a unique fingerprint.

Cite this