Abstract
Chirality - that is, left- or right-handedness - is an important concept in a broad range of scientific areas. In condensed matter, chirality is found not only in molecular or crystal forms, but also in magnetic structures. A magnetic skyrmion1-8 is a topologically stable spin vortex structure, as observed in chiral-lattice helimagnets, and is one example of such a structure. The spin swirling direction (skyrmion helicity) should be closely related to the underlying lattice chirality via the relativistic spin-orbit coupling. Here, we report on the correlation between skyrmion helicity and crystal chirality in alloys of helimagnets Mn1-x Fex Ge with varying compositions by Lorentz transmission electron microscopy and convergent-beam electron diffraction over a broad range of compositions (x = 0.3-1.0). The skyrmion lattice constant shows non-monotonous variation with composition x, with a divergent behaviour around x = 0.8, where the correlation between magnetic helicity and crystal chirality changes sign. This originates from continuous variation of the spin-orbit coupling strength and its sign reversal in the metallic alloys as a function of x. Controllable spin-orbit coupling may offer a promising way to tune skyrmion size and helicity.
Original language | English |
---|---|
Pages (from-to) | 723-728 |
Number of pages | 6 |
Journal | Nature Nanotechnology |
Volume | 8 |
Issue number | 10 |
DOIs | |
Publication status | Published - 2013 Oct |
ASJC Scopus subject areas
- Bioengineering
- Atomic and Molecular Physics, and Optics
- Biomedical Engineering
- Materials Science(all)
- Condensed Matter Physics
- Electrical and Electronic Engineering